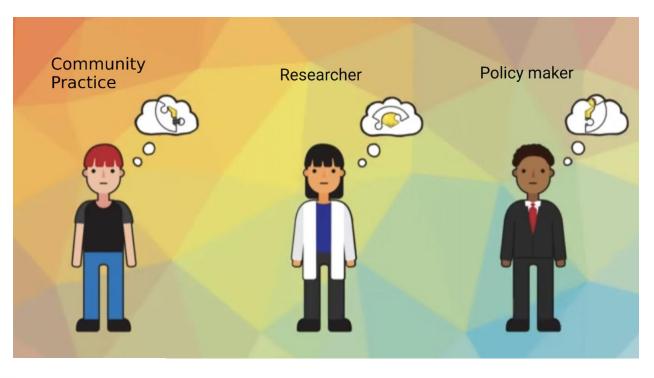


TRANSLATIONAL SCIENCE IN DRUG DEVELOPMENT

Muhammad Taher
Kulliyyah of Pharmacy, IIUM
MALAYSIA



Acceleration in drug development

Who involve?

Basic research exploration

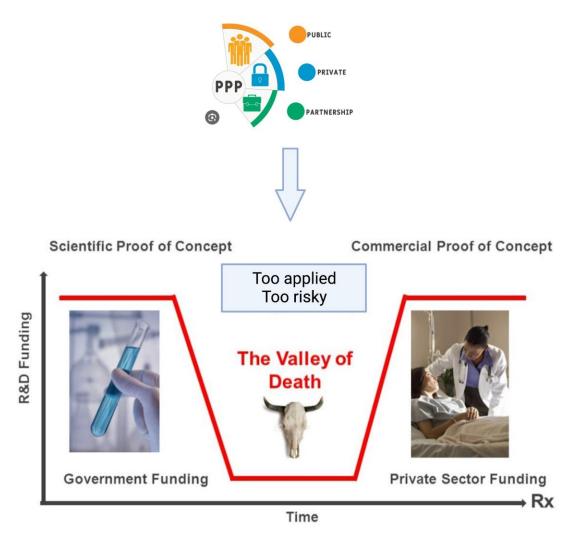
Traditional uses

Holy book/ Old manuscript

How it works

Translational Research Defined by the Clinical Problem

Breast Cancer Solution Clinical Trials Clinical Problem Drug Treatment


Laboratory Research

Drug (Key) Drug Target (Lock)

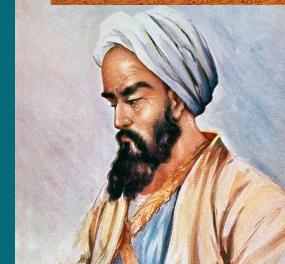
The Lock and Key

Drug Targets and Drugs

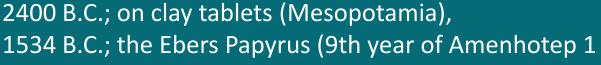
Lost in translation

Medicinal plant heritages

- Kampo (Japanese Traditional Medicine)
- TCM (Traditional Chinese Medicine)
- Ayurveda (Traditional Indian Medicine)
- TAIM (Traditional Arabic and Islamic Medicine)
- Jamu (Indoesian Traditional Medicine)



TAIM (Traditional Arabic and Islamic Medicine)


Ibn Sina (980 M)

Modern Physician

Jabir ibn Hayyan (721 AD) Founder of modern pharmacy

reign),

721 AD; Jabir ibn Hayyan, founder of modern pharmacy

980 AD; Ibn Sina, Modern Physician

1578 AD; the Chinese Materia Medica, document written

by Li Shizhen in 1578 (Zheng 1988).

1804 AD; Serturner who dealt with medicinal herbs to

the isolation of morphine

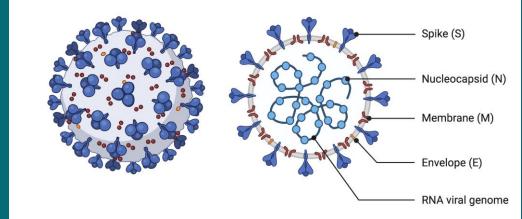
List of Islamic scholars in medicine

- Ali Al-Taberi (Encyclopaedia medicine)
- Al-Razi (Rhazes) (*Smallpox*)
- Ali Ibn Al-Abbas Al-Magusi (Haly) (Complete Book of the Medical Art)
- Ibn Al-Baitar (Discovery cancer effects of the plant named "Hindiba)
- Ibn Al-Qasim Al-Zahrawi (Abulcasis) (Surgery)
- Ibn Al-Haitham (Alhazen) (*The father of modern optics-Vision*)
- Ibn Abi Al-Zuhr (Avenzor) (*Anatomy*)
- Ibn Rushd (Averroes) (Wrote 20 books on medicine)
- Ibn Al-Nafis (*Pulmonary circulation*)

Maqasid al-Shariah (objective of Shariah)

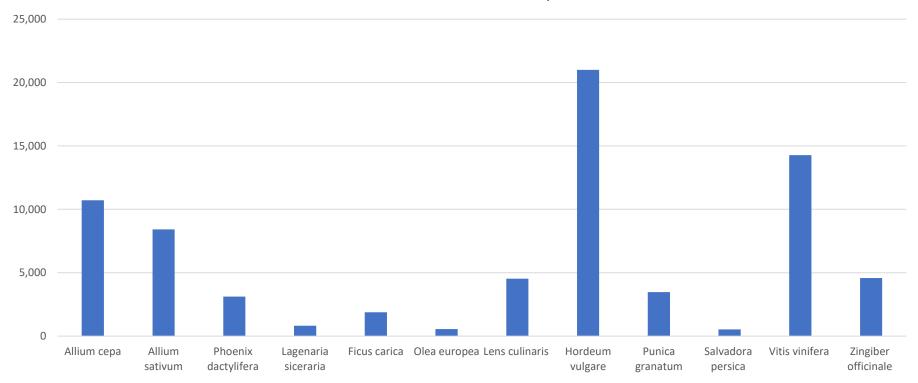
Protecting life

ijtihad encourages the effort to research on drug, cosmetic and vaccines.

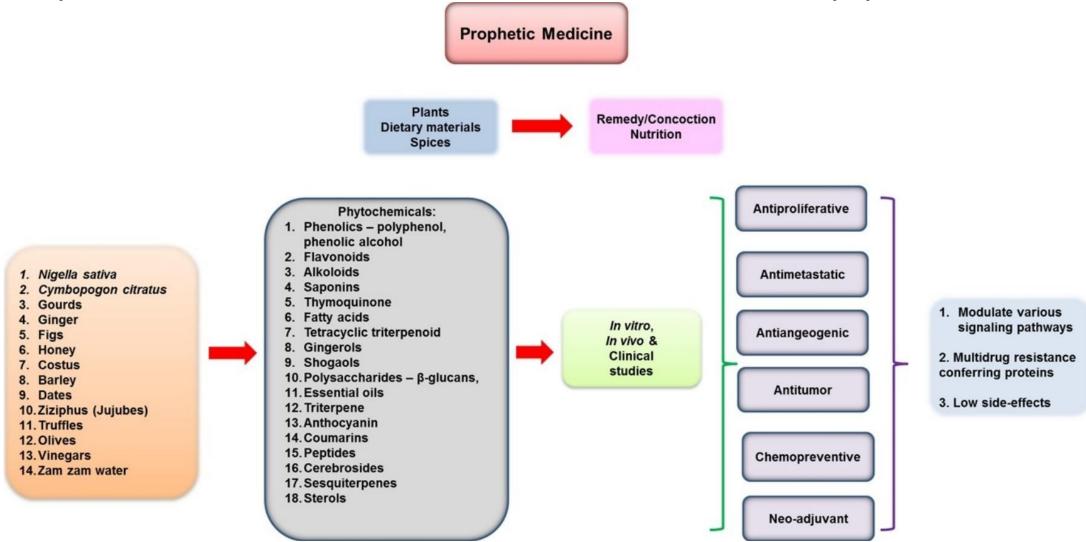

"There is no disease that Allah has created, except that Allah also has created its cure."

Human Coronavirus Structure

Natural Medicines According to Islamic Scriptures


Qur'anic plants Prophetic plants

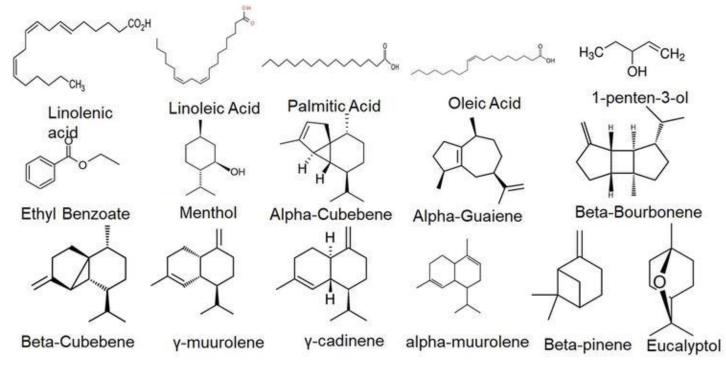
Number of articles in Scopus



Prophetic medicine in modern therapy

Dates palm (Phoenix dactylifera L.) fruits

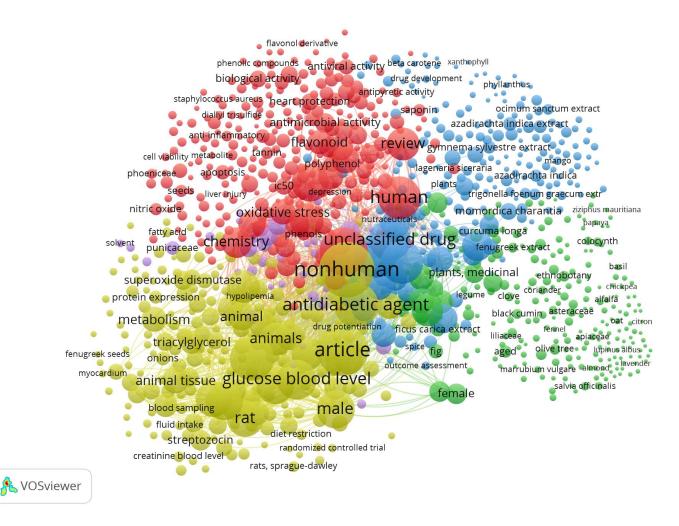
According to Al-Bukhaari (5445) and Muslim (2047), narrated by Sa'd ibn Abi Waqqaas that the Prophet (PBUH) said: "Whoever eats seven Ajwa dates in the morning, will not be harmed by any poison or witchcraft that day."


Anticholesteremic, antidiabetic, anti-inflammatory, antioxidant, hepatoprotective and anticancer effects

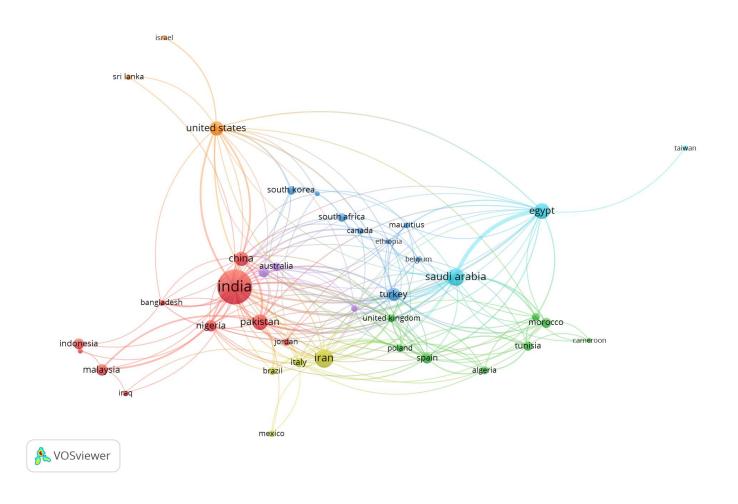
DOI: 10.5772/intechopen.101927

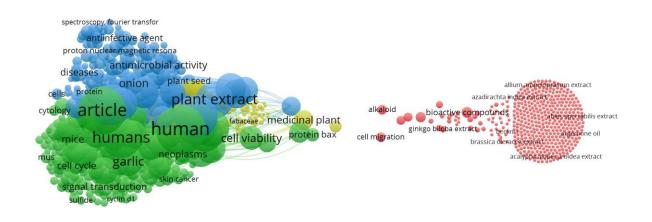
Fig (Ficus carica) fruit

Ayurveda, Unani, and Siddha are the classical medicine systems of Ayurveda that have acknowledged the medicinal benefits of fig. To treat and cure disorders of endocrine (diabetes), ventilatory, cardiovascular, digestive (ulcers and vomiting), urinary, reproductive (menstrual discomfort), and immune systems, as well as infectious diseases of the skin, scabies, and gonorrhea


Black cumin/black seed/Nigella sativa Rich historical and religious background

Traditional medicine for more than 2000 years; respiratory system, digestive tract, kidney and liver function, cardiovascular system, and immune system


Translation of prophetic medicine


Translational of prophetic medicine as antidiabetic (cooccurrence network visualization using VOSviewer)

Translational of prophetic medicine as antidiabetic by country

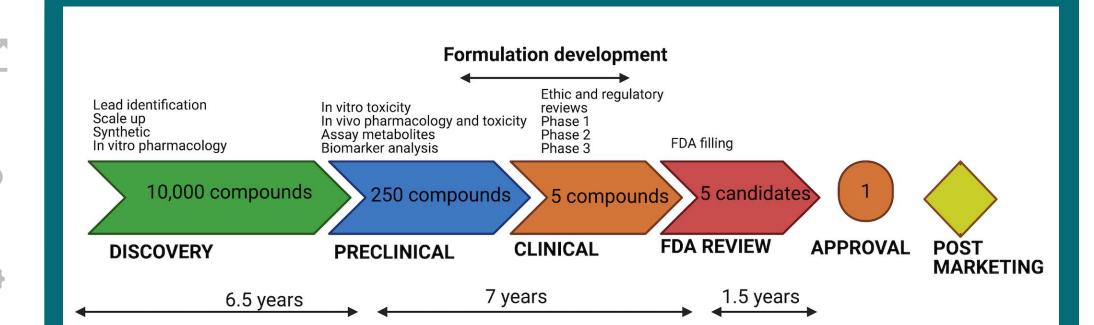

Translational of prophetic medicine as anticancer (co-occurrence network visualization using VOSviewer)

Chart: Drug/herbal discovery and development

COST: USD 1 billion
Duration: 12-15 years

Herbs used in traditional Medicines Jamu in Nusantara

What are the challenges?

- 1. Dosage
- 2. Stability
- 3. Standardisation
- 4. Hygiene
- 5. Additive/adulteration

vulnerable to adulteration are diabetes, calm and sleep, sexual dysfunction, pain relief, and rheumatism

Commercialised traditional medicines

- In the form of extract (Jamu)
- Standardized active the compound (preclinical/obat terstandar)

- GMP process
- Increased stability

Herbal medicine preparation

- Extracts
- Decoction
- Tincture
- Syrup
- Eyewash

Traditional medicine (TM)-Global market demand

- Demand
 - In Africa (90%) and in India (70%) of the population depend

- are based on natural products or mimetics
- Regulations

on traditional medicine • (TCM)~ 3000 years Top selling botanical: Ginkgo biloba, Allium sativum (garlic), and Panax ginseng 177 drugs approved worldwide for treatment of cancer, more than 70%

2018 National or state level laws or regulations for T&CM No reply / Data not available Not applicable

Fig. 1.7. Member States with a national or state level laws or regulations for T&CM,

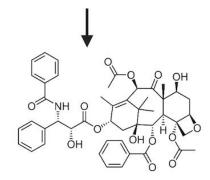
In Indonesia

- 30,000 plants potential
- 1,845 species used as medicine
- Use by 70% people in rural area
- Diseases:
 - Cancer
 - Arthritis/rheumatism
 - High cholesterol
 - Stroke
 - Diabetes
 - Kidney disease

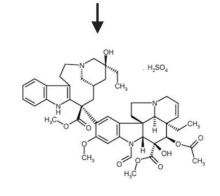
Small molecules from NATURE used as drugs

Of the 1,135 new drugs approved from 1981 to 2010, 50 % were of NP origin (natural, derivatives and analogues) (Cragg, 2007)

Facts


95 % of the world's biodiversity has not been evaluated

2 million species of plants, animals, fungi and microorganisms (David et al., 2014)


Taxus brefivolia

Paclitaxel

Catharanthus roseus

Vincristine

Herbal phytopharmaceuticals which have reached US \$60 billion, with annual growth rates of 5–15 % represent a significant share of the total world pharmaceutical market (Naoghare and Song 2010)

Pharma industrySponsoring/developing

Global challenges in drug/herbal discovery and development

New drugs

- Anticancer (targeted)
 - Chemicals
 - Macromolecules
- Antibiotics (multidrug resistant bacteria)

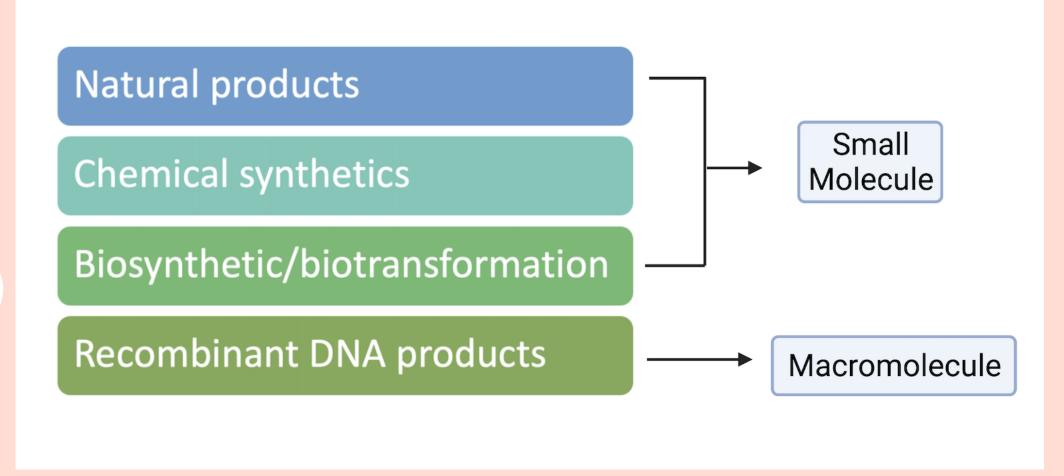
New vaccines

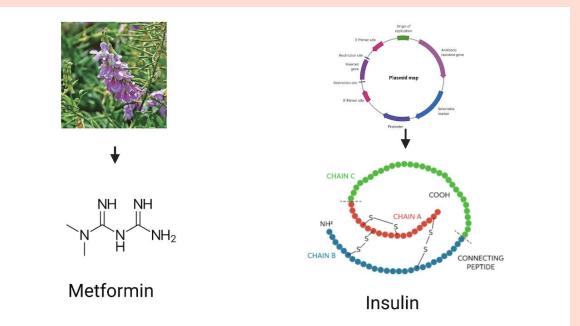
- New strain of virus
 - Covid-19

Improved Drug Delivery

Increase efficacy and reduce toxicity

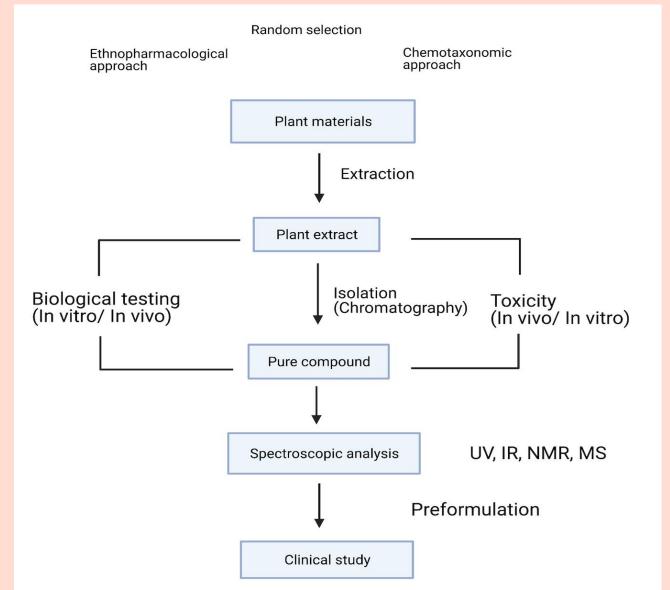
SOURCE OF DRUGS

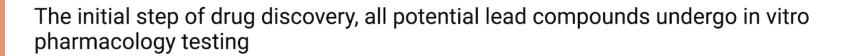




Small molecule vs macromolecule

Small molecule	Macromolecule
Simple	Large
Single defined structure	Complex structure
Predictable chemical reaction	Derived from living cells
Produce identical product	Identical clone unlikely
Stable	Sensitive to heat
Easy to characterise	Difficult to characterise
Minimal data packet	Robust data packet


General procedure to develop a new drug from plant sources

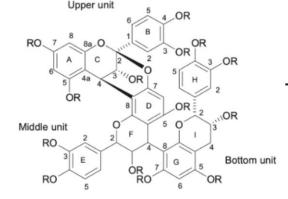


In Vitro Studies

Chemical/reagent, enzymes, microbes and cell lines

Antioxidants
Antidiabetics
Antiinflammatory
Anti-cancer/cytotoxicity,
Anti-hyperglycemic,
Anti-obesity,
Wound healing.

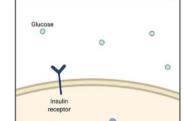
Cinnamon- Antihyperglycaemic-adipocyte cells

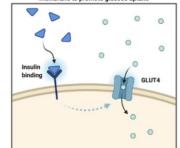


Cinnamon bark

Cinnamtannin B1

Adipocyte cells-stained


Insulin mimicking activity


Adipocyte cells

Intracellular

GLUT4

Sweet hopes for diabetics

Sabah & Sarawak

Covid-19 Watch

NATION

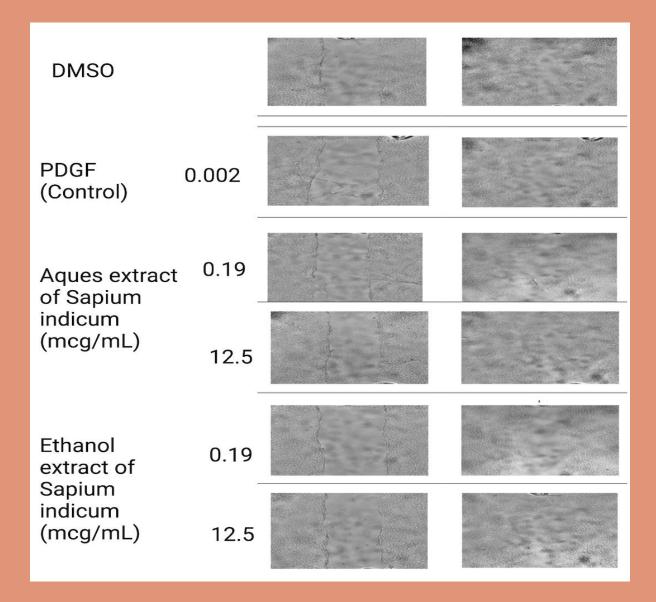
Friday, 06 Jan 2006 12:00 AM MYT

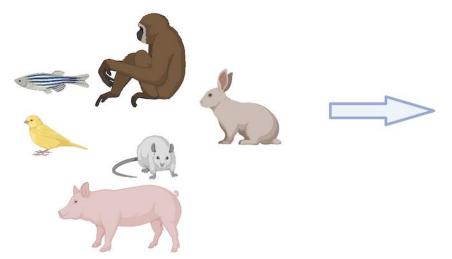
MUAR: Good news for diabetics. A three-year study carried out by Universiti Teknologi Malaysia in Skudai has confirmed previous findings that cinnamon has the potential to lower sugar levels.

By HAMDAN RAJA ABDULLAHnewsdesk@thestar.com.my

Related News

UTM research and development manager Prof Dr Mohammad Roji Sarmidi said yesterday their research showed that the spice, known as kayu manis locally, has positive


Wound healing-using cell culture



Animal study

Animals

Guidelines

OECD NIH ICH CPSEA

3R rules

Reduction, Refinement, Replacement

<u>Tests</u>

Antihyperglycaemic Wound healing Antitumour Antinociceptive

Pharmacokinetics Pharmacodynamic Physiology Pharmacology

Goal

Mechanism of action

DEVELOPMENT DRUG FORMULATION

Biopharmaceutical Classification System

Nanotechnology

Challenges

Strategy

NANOFORMULATION

Pharmacokinetic,

Function

Polymeric nanoparticle

Lipid nanoparticle

Gold nanoparticle

Micelle Nanosphere

Mesoporous nanoparticle

Carbon nanotube

Silicon nanoparticle

Microporous scaffold

Hydrogel

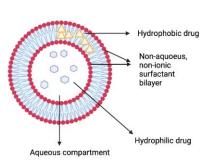
Hydrogel

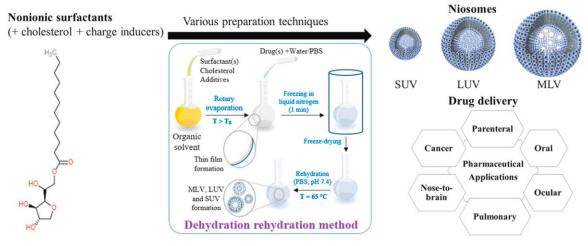
Nanocrystal

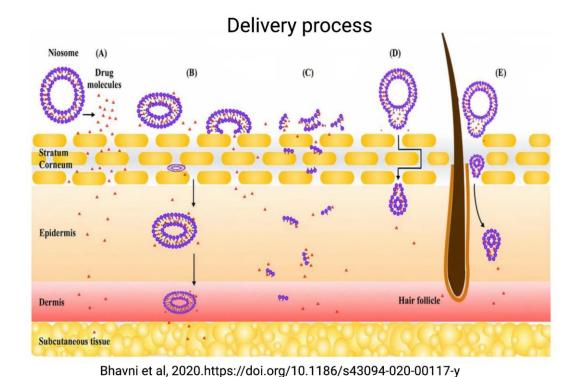
Nanodiscs

Microfluidic device

Biocompatible, biodegradable, non-immunogenic, have a long shelf life, exhibit high stability.







NIOSOMAL FORMULATION

Masjedi et 2021, https://doi.org/10.1016/j.jddst.2020.102234

Aceclofenac Proniosom, Rana et al 2020 Raloxifene tansfersome, Mahmood et al 2017

- The range between therapeutic and toxic doses is called "therapeutic window."
- The word "natural" is good, every year, huge damage is caused by the inappropriate use of the so-called natural products.
- Approximately 123 million people use these products for various purposes,
 - obesity,
 - to prevent cancer,
 - to ease pain,
 - to enhance sexual performance,
 - to stimulate mood,
 - concentration, and memory,
 - to enhance immune responses,
 - to increase muscle mass and
 - physical performance

FDA has registered about 2900 cases of toxic effects, including 104 deaths caused primarily by the abuse of *Ephedra*.

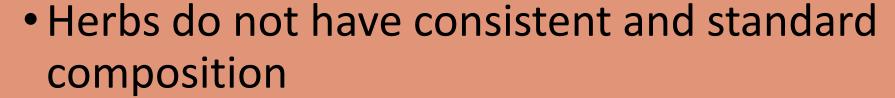
Three fundamental principles in herbal development and/or clinical use (Lietman, 2013)

1. Standardization and regulation (rigorously enforced) of the product being studied or being used clinically.

2. Scientific proof of a beneficial clinical effect.

3. Scientific proof of safety (acceptable toxicity) for the patient

Quality Assurance and Quality Control


- Identity (Pharmacognostical testing, Qualitative and Quantitative with reference)
- Purity-Instrumental testing (HPLC, GC)
- Contents-Instrumental (HPLC, GC)
- Microorganism testing- Microbial growth test
- Stability testing-ICH guidelines

Variable composition

 Numerous chemical constituent in different part (e.g roots, leaves and fruit)

• Factor affecting the variability: climate, growing conditions, time of harvesting, post harvesting and storage.

Contamination

- Misidentification of species
- Adulterations

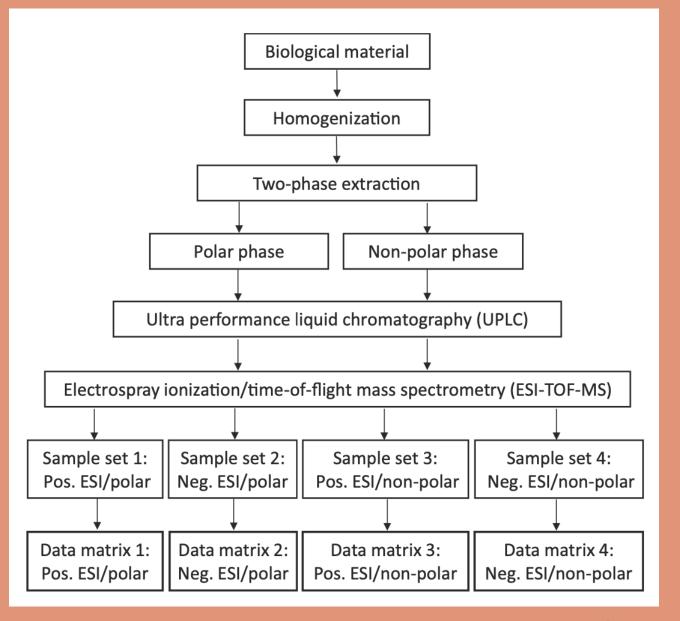
Marker compounds

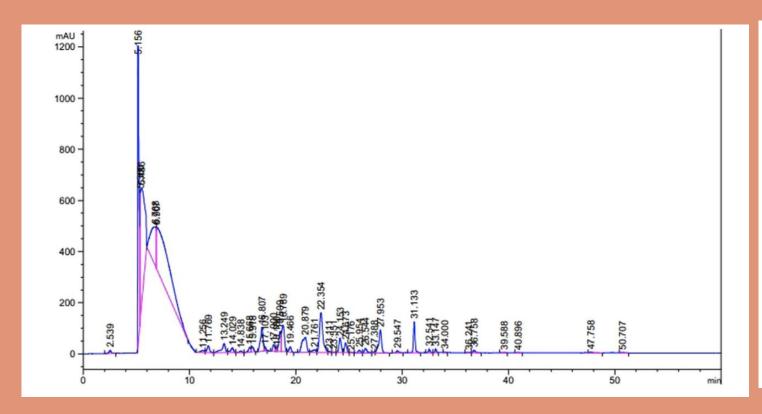
 Ideal chemical markers should contribute to the therapeutic activity.

- Main application of chemical markers
 - 1. Identification adulterations
 - 2. Differentiation of multiple source
 - 3. Determining best harvest time
 - 4. Confirmation of collection site
 - 5. Quality evaluation of herbal parts
 - 6. Stability testing

Analytical in Quality Control

- High Performance Liquid Chromatography
- Gas Chromatography
- Thin Layer Chromatography
- Capillary Electrophoresis
- LC-MS fingerprint





Metabolite
 fingerprinting is a
 comprehensive and
 comparative
 nontargeted
 metabolomics
 approach

Metabolite fingerprinting HPLC-DAD identification of phenolic compounds in Olax nana leaves

	Peak	RT (min)	Peak height (mAU)	Peak area %	Proposed identity of compound*	HPLC–DAD λmax (nm)
	1	2.5	13.29053	0.320	Ascorbic Acid	244
	2	5.2	1168.32886	14.41	Gallic acid derivative	273, 279, 288
	3	5.3	504.33762	3.19	Gallic acid derivative	280
	4	5.8	456.65558	17.81	Hydroxybenzoic acid derivative	280
	5	6.3	151.39925	8.20	Hydroxybenzoic acid derivative	274
	6	6.9	163.31013	25.57	Gallic acid derivative	271, 278, 287
	7	11.1	8.41879	0.33	Kaempferol-7-O-glucoside	254
	8	11.6	26.59516	0.70	p-Coumaric acid derivative	313
	9	13.2	35.75774	1.36	Isovitexin-4-O-glucoside	254
	10	14.3	18.4162	0.57	Caftaric acid	242; sh 298; 328
	11	14.9	6.63179	0.17	Gallic acid derivative	280
	12	15.5	19.11495	0.46	Hydroxybenzoic acid derivative	278
	13	15.7	19.45154	0.43	Hydroxybenzoic acid derivative	278
	14	16.9	92.68282	2.47	p-Hydroxybenzoic acid	256
	15	17.0	15.39486	0.23	Caffeoylmalic acid	327, 300, 268
	16	17.5	26.84283	0.60	bis-HHDP-glucose	232
	17	18.1	14.13607	0.21	Quercetin-3-O-triglucoside	268; 340
	18	18.3	77.88322	1.70	Galloyl-HHDP-glucose	232
	19	18.9	102.11224	2.93	Apigenin-7-O-rutinoside	254
	20	19.9	19.88177	0.46	P-coumaric acid derivative	228, 316
1						

HPLC-DAD chromatogram of methanolic extract of Olax nana (Ovais et al., 2018)

Conclusion

- WHO promotes the use of traditional medicines (particularly herbal medicines) in primary health care
- Some countries rely on herbal medicine in their primary health care.
- Herbal medicine development requires scientific support to ensure the quality, efficacy and safety of the product

KULLIYYAH OF PHARMACY

Thank You

mtaher@iium.edu.my

Editor-in-Chief
Journal of Pharmacy, IIUM

https://journals.iium.edu.my/ktn/index.php/jp/index