From Tiny-Al To Lite-Al in Edge Computing

Progress toward the middle

Biography

- Dr. Adli Md Ali is a:
 - Assistant Professor @ IIUM, Kulliyyah of Science, Dept. Physics
 - Research Fellow @ Microwave Research Institute, UiTM

• Research:

- Development of resource-efficient ML models
- Ethics in clinical Ai
- ML development for sensor just recently

• Skill:

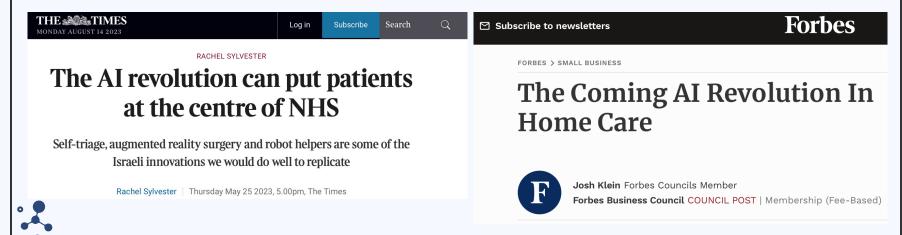
- \circ A coder ightarrow Python , ML and ANN
- High performance computing
- Distributed computing system

• Dislike:

• Writing paper , grant report writing

TABLE OF CONTENTS 01 WHY do we need Lite-Ai 02 WHAT is Lite-Ai **O3** HOW do create Lite-Ai **O4** Conclusion | Q&A

The Coming Clinical – Ai Revolution



Unparallel Accuracy?

SEARCH

Subscribe Now

SIGN IN

TECH · ALZHEIMER'S

Researchers used artificial intelligence to detect Alzheimer's risk with over 90% accuracy and could transform how medicine is practiced

Google's AI for medicine shows clinical answers more than 90 pct accurate

Bloomberg

Published: 13 July,2023: 12:23 AM GST Updated: 13 July,2023: 12:26 AM GST

AI In Healthcare: New AI Model Diagnosed Heart Attacks With 99% Accuracy; May Help Doctors In Future

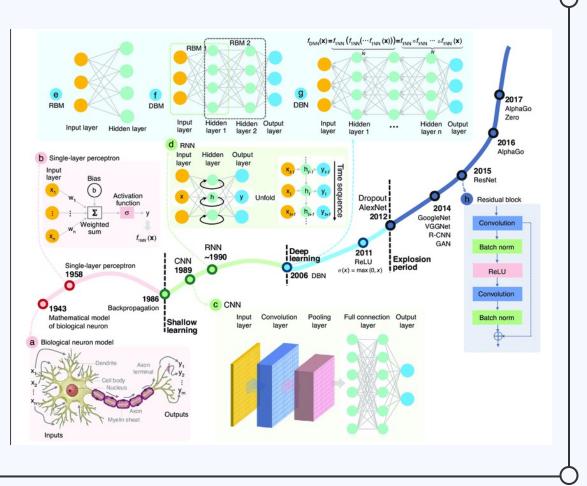
Currently, the tool is undergoing clinical trials in Scotland.

By Vikas Yadav Sat, 13 May 2023 12:27 AM (IST) Source: JND

Progress of ANN

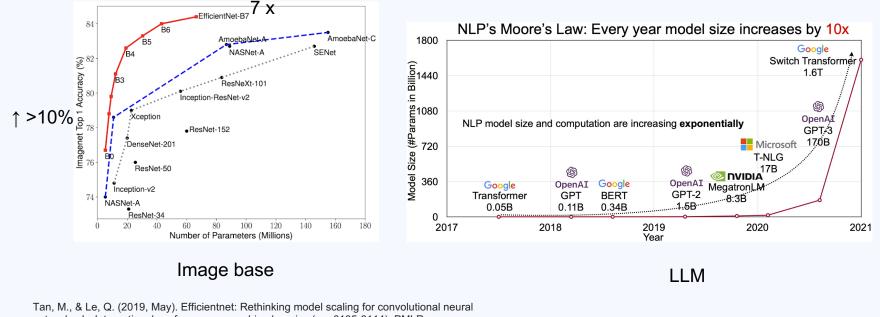
From a shallow – simple CNN to multilayer deep complex model

Zuo, Chao & Qian, Jiaming & Feng, Shijie & Yin, Wei & Li, Yixuan & Fan, Pengfei & Han, Jing & Qian, Kemao & Chen, Qian. (2022). Deep learning in optical metrology: a review. Light: Science & Applications. 11. 39. 10.1038/s41377-022-00714-x.



Progress of ANN

Number of parameter per-model increase significantly in just few years

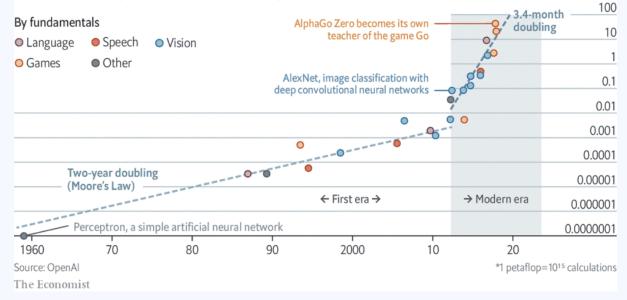


networks. In International conference on machine learning (pp. 6105-6114). PMLR.

Demand in Computer Resource

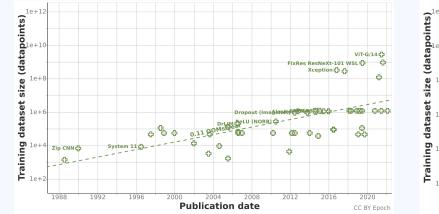
Deep and steep

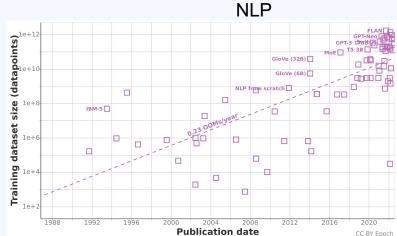
Computing power used in training AI systems Days spent calculating at one petaflop per second*, log scale



Demand in Data

Image base





arXiv:2207.02852 [cs.LG]

Impact of Demand

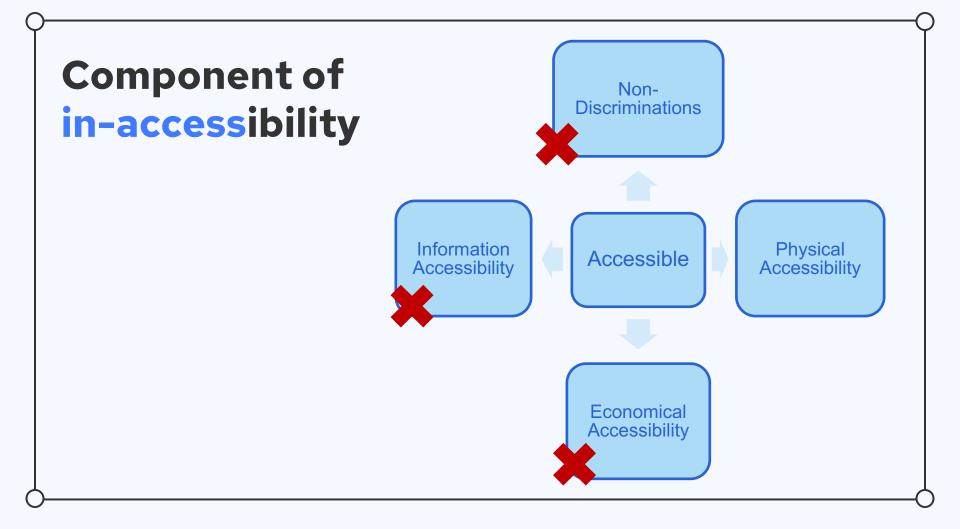
- Socio-economic barrier
- Infrastructure strain
- Environmental impact
- Limits in potential application



The WHO Constitution (1946) envisages "...the highest attainable standard of health as a fundamental right of every human being." Acknowledging health as a human right recognizes a legal obligation on states to ensure access to timely, acceptable, and affordable health care.

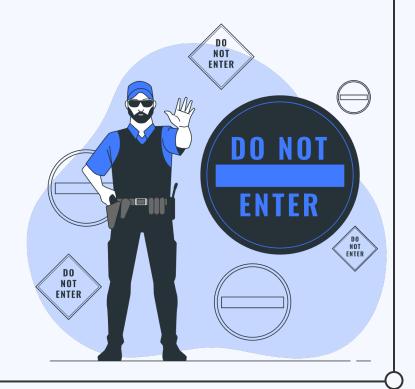
Component Right to health

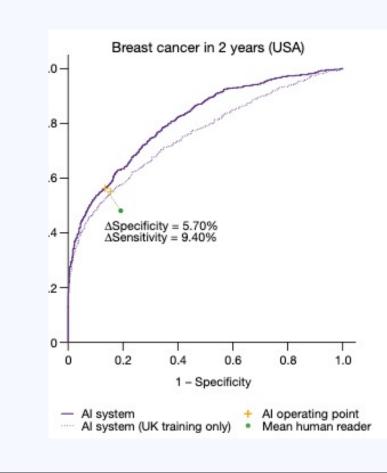
- 1. Availability
- 2. Accessibility
- 3. Acceptability
 - 4. Quality



High Income Nation → Data Privacy

Middle Low-Income Nation → Resource Accessibility → Local data Availability





Effect of dataset locality

Article | Published: 01 January 2020

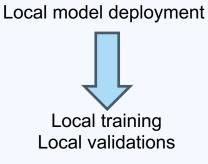
International evaluation of an AI system for breast cancer screening

Scott Mayer McKinney 🖂, Marcin Sieniek, [...]Shravya Shetty 🖂

Nature 577, 89–94 (2020) Cite this article

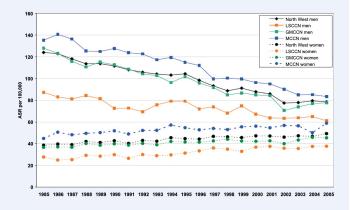
Local Context

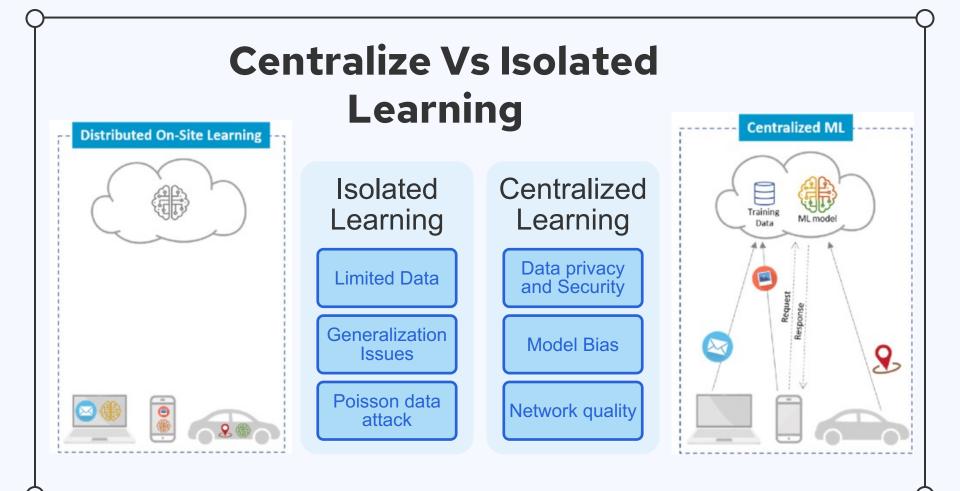
- In Clinical Ai local context is crucial,
- Incident rate continuously changes
- Demographic: Population aging and mobility
- Changes in treatment planning



Estimated age-standardized incidence rates (World) in 2020, lung, both sexes, all ages

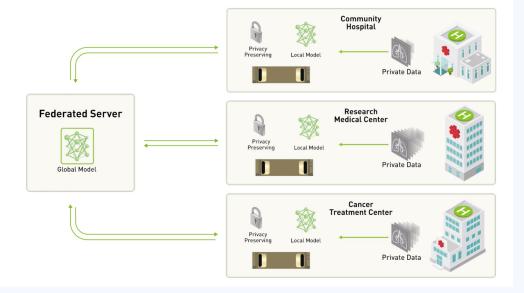
Figure 2.1: Trends in lung cancer incidence rates (ASR per 100,000) by sex and cancer network in the North West 1985 to 2005.





Federated Learning

- Train and validated using local dataset
- Merge with other model for greater generalization
- No data sharing between node
- Poisson data attack are localized



Federated-Al in Malaysia

Ideally

Realistically speaking

Federated-Al in Malaysia

- Due to limit in financial resource and talent.
- Only edge-like serve can be deploy in clinic / hospital
- Introduce the restrain to what kind of ML model can be deployed.

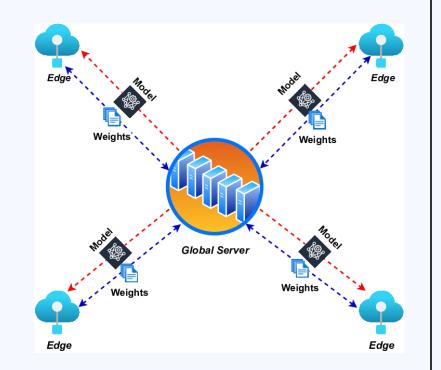


TABLE	LE 2. Comparison of TinyML per ances against existing technologies.					1	
	Technologies	Latency	Privacy considera- tion	Accuracy	Power Consumption	Reliability	Memory Consumption
alized	Cloud Computing	10-500 ms	Very Low	<mark>86-94%</mark>	50-1000 W	Depends on the uninterrupted internet connectivity	GBs to TBs
	Fog Computing	<mark>5-400 ms</mark>	Low	<mark>85-93%</mark>	<mark>10-100 W</mark>	Depends on active wireless connectivity	MBs to GBs
	Edge computing	0.70-350 ms	Low	<mark>80-90%</mark>	<mark>1-10 W</mark>	Depends on active wireless connectivity	Few KB
cific	TinyML	<mark>0.18-300 ms</mark>	Very High	<mark>80-90%</mark>	25-300 mW	Does not relay on network connectivity	Few KB

Abadade, Y., Temouden, A., Bamoumen, H., Benamar, N., Chtouki, Y., & Hafid, A. S. (2023). A Comprehensive Survey on TinyML. *IEEE Access*.

Tiny – ML

Subfield of AI that leverages extremely low-profile devices to execute AI algorithms, reducing the energy consumption, CO_2 emissions, and the overall cost associated with traditional AI methodologies.

ChatGPT

Tiny - ML

- Practical Applications:
 - Wearable, manufacturing sensor, health monitoring, satellite
- Low-power and Offline Capabilities:
 - Focus on microcontrollers
 - Run unplugged for extended periods
 - Remote location deployment (offline learning)
- Privacy and Ethics:
 - Processing data at the source
 - Satisfying data protection regulations :

Hardware	Processor	CPU Clock	Flash Mem- ory	SRAM Size	Sensors	Power
Alif Ensemble E7	Cortex-M55 with Ethos-U55 microNPUs	400MHz	4MB	4MB	Camera and microphone	1.71- 3.6V
Arduino Nicla Vision	Dual Arm Cortex M7/M4	M7: 480MHz and M4: 240MHz	2MB	1MB	Camera, microphone and IMU	3.7V Li-po battery
Infineon CY8CKIT- 062S2 Pioneer Kit	Arm Cortex M4	240MHz	2MB	1MB	Accelerometer, microphone	1.8-3.3 V
Seeed Grove Vision AI Module	Himax HX6537-A	400MHz	2MB	2MB	Camera, microphone and accelerometer	5V
SiLabs Thunderboard Sense 2	Cortex-M4F	40MHz	1MB	256KB	Accelerometer and microphone	3.3V
SiLabs xG24 Dev Kit	Cortex-M33	78MHz	1.5MB	256KB	Accelerometer and microphone	3.3V
ST B-L475E- IOT01A	Arm Cortex M4	240MHz	1MB	128KB	Humidity sensor, temperature sensor, accelerometer and microphone	3-5V

TABLE 3. Hardware Platforms to Support TinyML

Abadade, Y., Temouden, A., Bamoumen, H., Benamar, N., Chtouki, Y., & Hafid, A. S. (2023). A Comprehensive Survey on TinyML. *IEEE Access*.

Can we use Tiny-ML? No

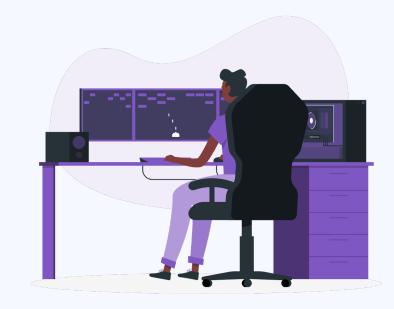
- 'Big-Model' is needed to process complex medical image
- Somehow mobilnet never produce good
 result
- Difficult task such generative and LLM are deem necessary in the future

Table 9. GPU memory and training time on ImageNet; memory indicates that per GPU and time indicates that per iteration.

Architecture	Top-1 (%)	memory (MB)) time (s)	
ResNet50 [14]	24.01	3929	0.31	
ResNet152 [14]	22.16	7095	0.63	
DenseNet264 [18]	22.15	9981	0.60	
DSNet50	22.49	4777	0.37	
DS2Net50	22.03	5133	0.39	

	Backbone Model	Transfer Learning Approach ²	Mean Training Accuracy	Mean Test AUC			
	Initiating transfer learning						
	ResNet50	IR	0.935	0.796			
	ResNet50	CR	0.879	0.831			
	ResNet50	CI	0.868	0.827			
	ResNet50	XR	0.819	0.806			
	ResNet50	XI	0.852	0.831			
	DenseNet121	IR	0.916	0.803			
	DenseNet121	CR	0.807	0.800			
	DenseNet121	CI	0.784	0.779			
	⁻ enseNet121	XR	0.799	0.781			
v	enseNet121	XI	0.864	0.826			
2		Concatena	ting transfer learning	5			
	ResNet50	I + C	0.935	0.780			
	ResNet50	I + X	0.930	0.776			
	enseNet121	I + C	0.935	0.802			
	enseNet121	I + X	0.914	0.813			
		Co-training	ng transfer learning				
	ResNet50	$\mathbf{C} \cup \mathbf{X}$	0.855	0.790			
	enseNet121	$\mathbf{C} \cup \mathbf{X}$	0.775	0.826			

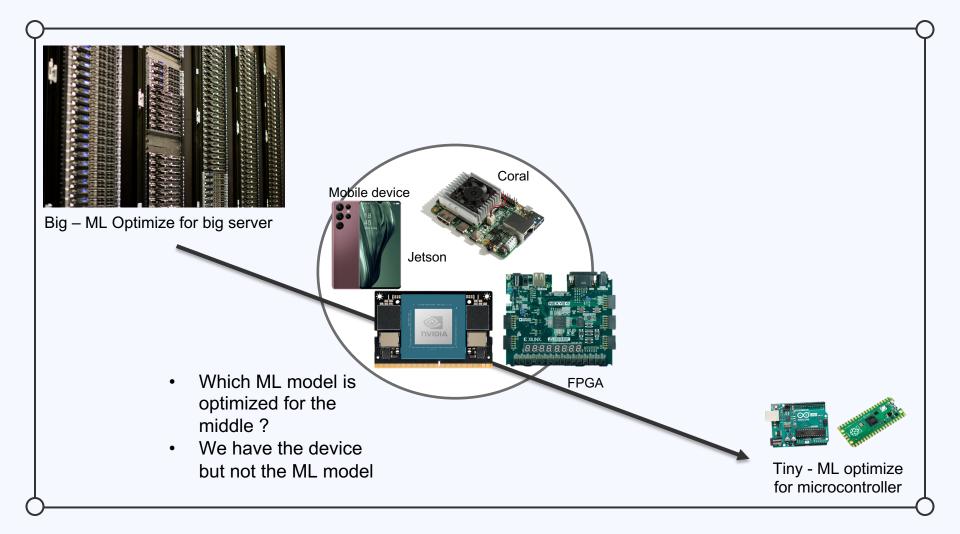
Huang, G. H., Fu, Q. J., Gu, M. Z., Lu, N. H., Liu, K. Y., & Chen, T. B. (2022). Deep transfer learning for the multilabel classification of chest X-ray images. *Diagnostics*, *12*(6), 1457



02 What is Lite-Ai

Lite-Ai is a middle alternative

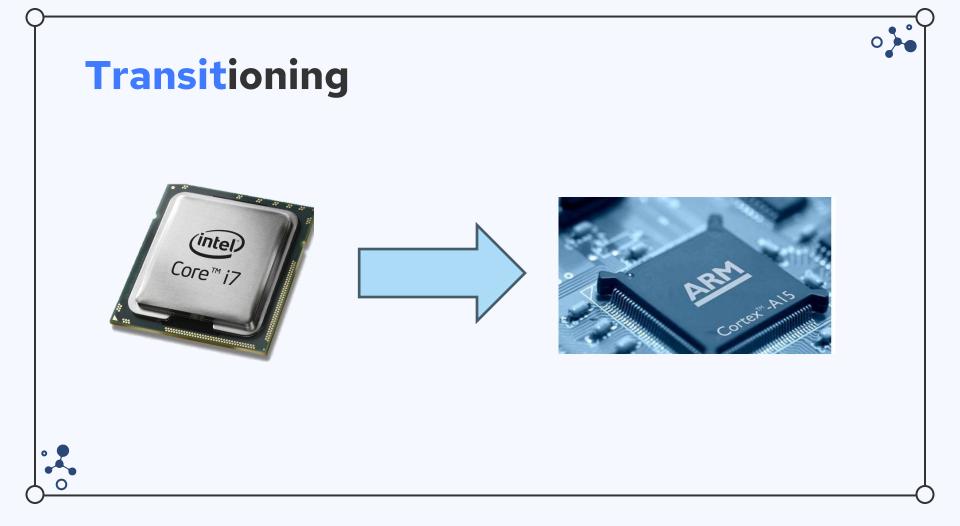
Ο

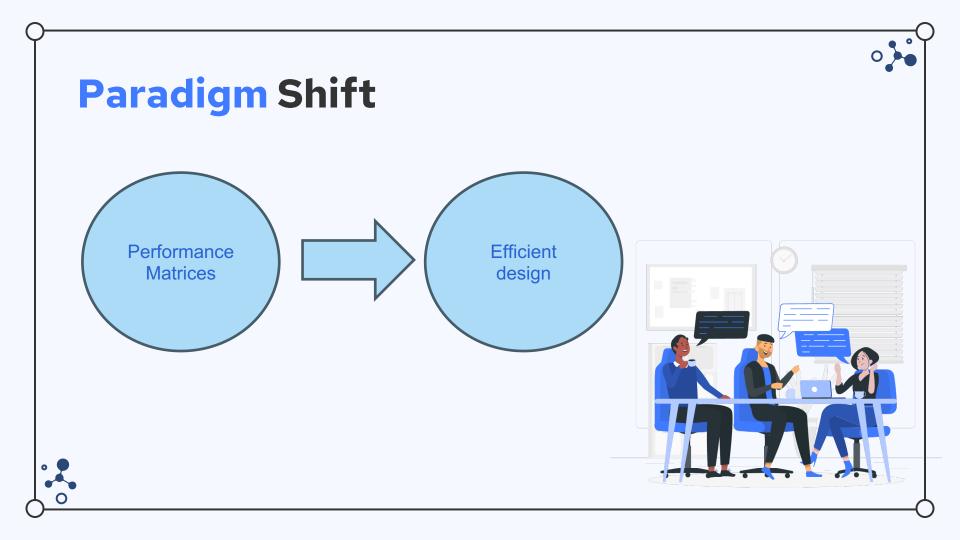


Lite – Ai

- Not attempt to shrink or minimize the complexity!
- Is attempt to **repackage** or **re-optimize** existing Big AI Model to be more efficient
- Make it **'Lite'** enough to run on middle-size computer (~Fog computing)
 - \circ RAM 1 8 Gig
 - GPU is not essential
- To be execute in environment and infrastructure that have 'adequate-resource'
 - Continuous power
 - Stable connectivity (not fast)
 - No aircon but climate fluctuations are negligible

The Tomark Aero Viper SD4 Even though it is a 'Lite' aircraft but still highly complex





HOW ? Is it even possible

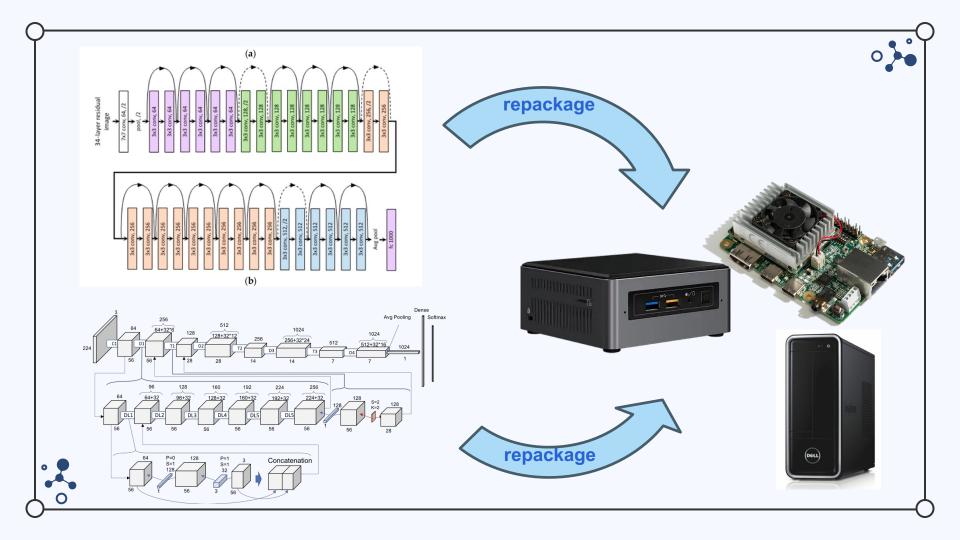
03

still work in progress

0

0

0.



Example of Method

On-the-Fly Loading

Loading dataset and perprocessing mapping is done perbatch

Anomalous ROI

Extracting saliency mapping before training

Model Repacking

Repacking and re-modelling the model

Clinical Data Size

Cloud Healthcare API > Documentation > Resources

Was this helpful? 🖞 Ӆ

Send feedback

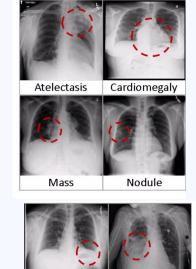
NIH Chest X-ray dataset

The NIH Chest X-ray dataset consists of 100,000 de-identified images of chest x-rays. The images are in PNG format.

The data is provided by the NIH Clinical Center and is available through the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC

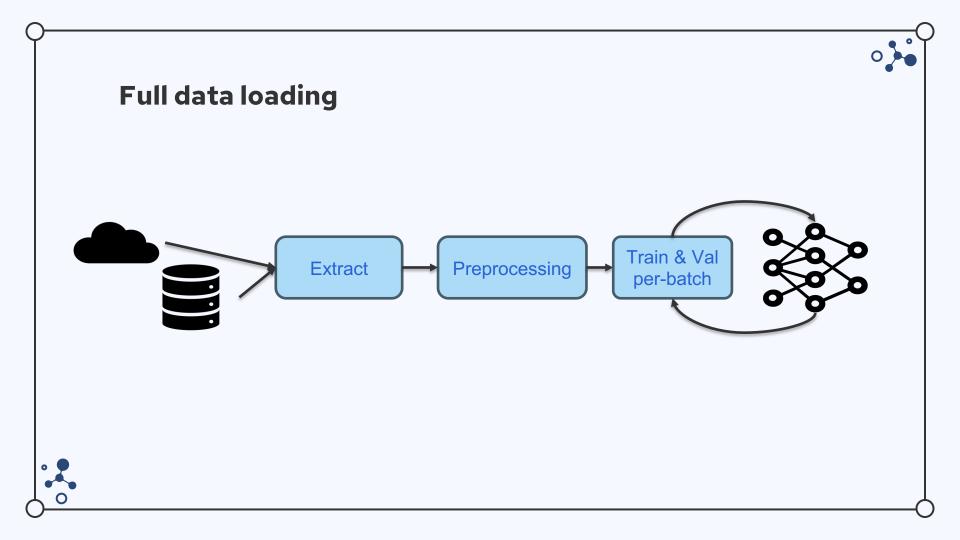
You can also access the data via Google Cloud, as described in Google Cloud data access.

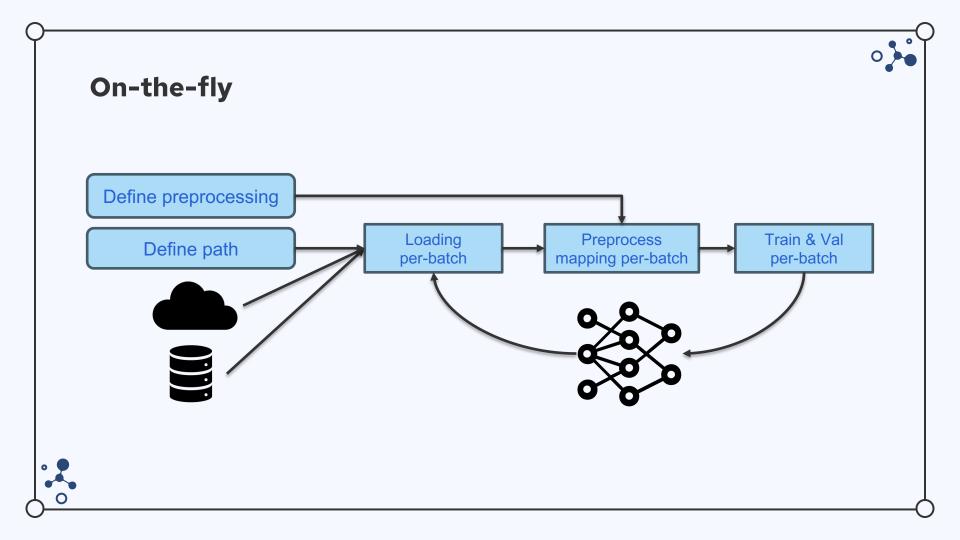
- Total size of sample is 43 Gig
- Impossible to load ALL in RAM

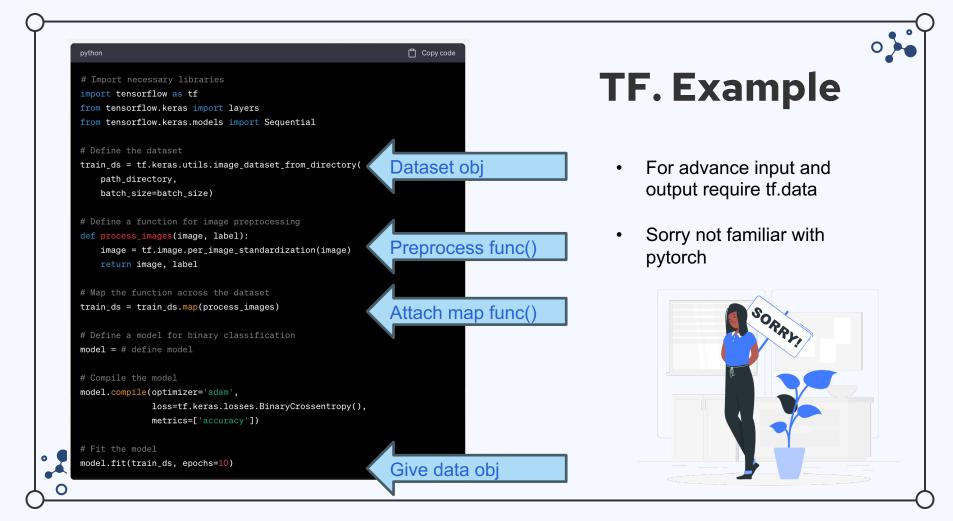


Infiltration









Advantageous:

- Allowing bigger and complex model to be load into the RAM
- Adding room to increase input data dimension

 more information
- Take advantage of parallel processing, CPU threads handling data loading and preprocessing while GPU threads handle model training

• Disadvantageous:

- Complex input (multi-type input) with complex target (regression, multilabel, multitype) will be very difficult to set-up
- Slow data extraction (pulling from cloud) can cause GPU to wait for data input; therefore, the I/O speed matter

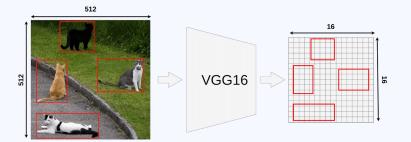
Anomalous ROI

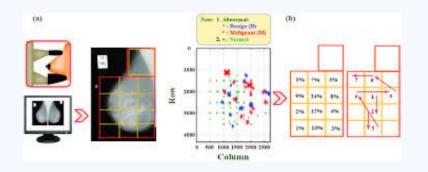
Region of Interest (ROI) extraction

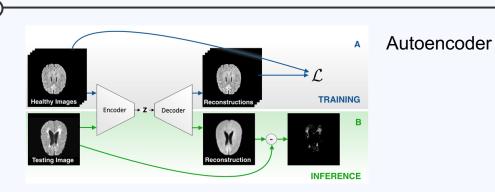
- Extract ROI from image
- Region proposal network
- Reduces computation resource improving efficiency and speed, as the network only needs to focus on relevant regions

Anomalous ROI Extraction

- Anomalous region extraction focuses on identifying regions in the image that significantly deviate from the norm.
- This is primarily used in anomaly detection tasks,

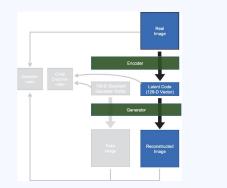






Baur, C., Denner, S., Wiestler, B., Navab, N., & Albarqouni, S. (2021). Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. *Medical Image Analysis*, 69, 101952.

GAN



Nakao, T., Hanaoka, S., Nomura, Y., Murata, M., Takenaga, T., Miki, S., ... & Abe, O. (2021). Unsupervised deep anomaly detection in chest radiographs. *Journal of Digital Imaging*, *34*, 418-427.

senafas_{x2}

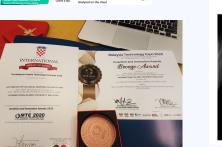
end

Fig. 1: The pseudocode for producing the ProbMat.

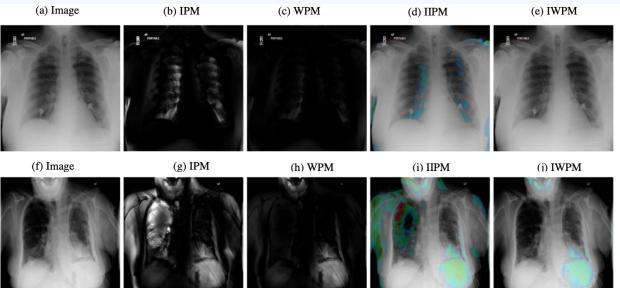
ProbMat + SOM

Input vector

senafas_{x2}



Allow image resolution to be reduce while still 'noting' the CNN-model there's an anomaly in this region



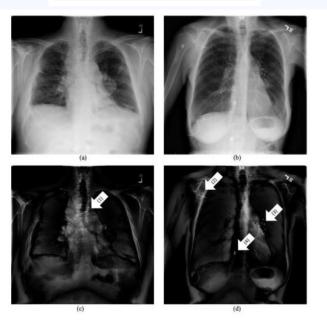
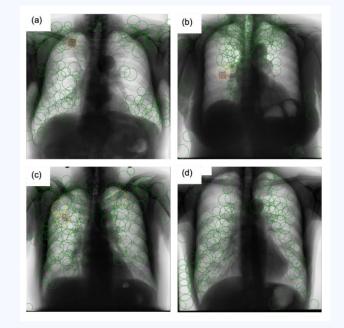


Fig. 6: Chest radiograph with foreign body, (a) and (b). The resulting WPM images (c) and (d) clearly show the foreign bodies, arrow (1)-(4).

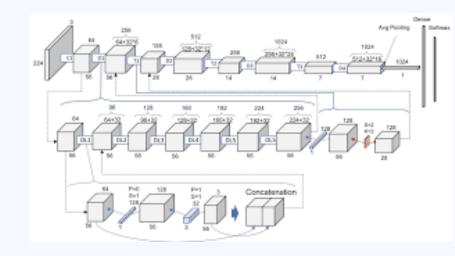
Hough Circle Transformation



- Does not reduce the baseline memory much, but immensely reduce training memory
- Require careful understanding the function of each layer, the activation function and optimization
- Require dedicated MSc / PhD
- Example of Model repacking
 - Easy : Reducing channel from 3 to 1
 - Intermediate: Combining residual layer
 - Hard: "densing" a model
- Cheat technique is to use knowledge distillation technique.

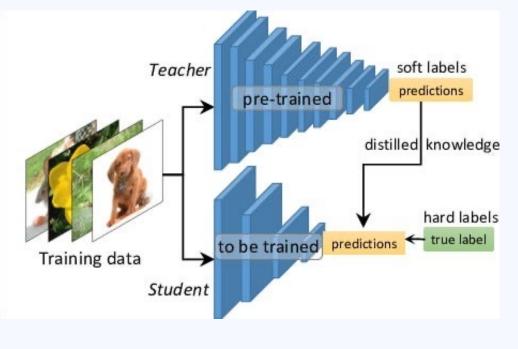
Example of 💝

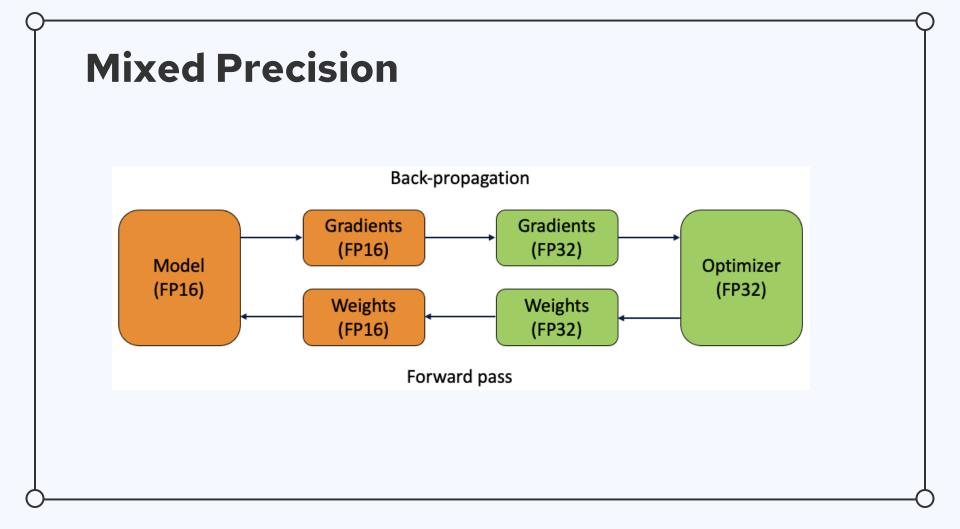
- A model inspire by DenseNet121
- Can take 512x512 image as input
- Use 1 channel instead of 3
- Aggressive feature reduction



thon Copy code
rom keras.models import Model
rom keras.layers import Conv2D, AveragePooling2D, Flatten, Dense, Activati
rom keras.regularizers import 12
$nput_img = Input(shape=(512, 512, 1))$
= Conv2D(32, (3, 3), padding='same', kernel_regularizer=12(0.01))(input_i
= Activation('swish')(x)
<pre>= AveragePooling2D(pool_size=(2, 2))(x)</pre>
= Conv2D(64, (3, 3), padding='same', kernel_regularizer=12(0.01))(x)
= Activation('swish')(x)
<pre>= AveragePooling2D(pool_size=(2, 2))(x)</pre>
= Conv2D(128, (3, 3), padding='same', kernel_regularizer=12(0.01))(x)
= Activation('swish')(x)
<pre>= AveragePooling2D(pool_size=(2, 2))(x)</pre>
= Flatten()(x)
<pre>= Dense(256, kernel_regularizer=12(0.01))(x)</pre>
= Activation('swish')(x)
es = x
<pre>= Dense(128, kernel_regularizer=12(0.01))(x)</pre>
= Activation('swish')(x)
<pre>= Dense(256, kernel_regularizer=12(0.01))(x)</pre>
= Add()([x, res])
= Activation('swish')(x)
= Dense(5)(x)
ut = Activation('softmax')(x)
odel = Model(inputs=input_img, outputs=out)
<pre>odel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['</pre>

Knowledge Distillation method



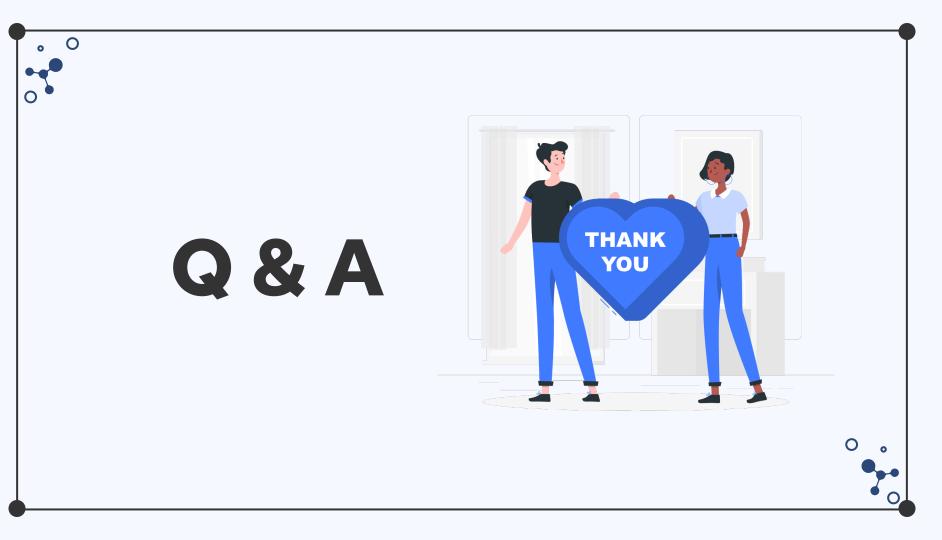


Conclusion Q & A

Conclusion

- Due limit is resource while at the same time requiring complex AImodel. A new type of AI-Model is needed
- Lite-AI attempt to **repackage** or **re-optimize** existing Big AI Model to be more efficient
- It also develop to increase Clinical Ai accessibility to more people

In research and development, we need to strongly consider its accessability to people of less fortunate

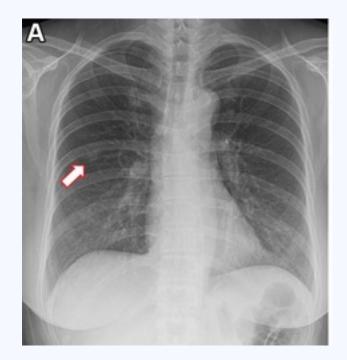


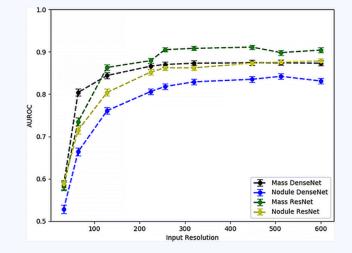
Storyset

Create your Story with our illustrated concepts. Choose the style you like the most, edit its colors, pick the background and layers you want to show and bring them to life with the animator panel! It will boost your presentation. Check out **how it works**.

Reduce input size? ~**No**

256 x 256





Sabottke, C. F., & Spieler, B. M. (2020). The effect of image resolution on deep learning in radiography. *Radiology: Artificial Intelligence*, *2*(1), e190015.