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A B S T R A C T   

Food manufacturing generates a considerable amount of leftovers. Garbage disposal could cause environmental 
and ecological issues. Nevertheless, it is often possible to convert waste into high-value usable goods. Researchers 
have combed through natural wastes and discovered substances that could be re-utilised to address the issues. 
One of the materials discovered in marine waste is chitin, which could be transformed into chitosan. Chitosan is a 
natural biopolymer derived from chitin, which is non-toxic, biodegradable, and biocompatible. Therefore, chi
tosan has a wide range of possible applications. Moreover, chitosan has been widely acknowledged to be an 
effective biomaterial in a variety of ways. This review aims to examine more closely the primary sources of 
chitosan, extraction methods, and applications.   

1. Introduction 

As the global population grows, so does waste production. According 
to M. Yadav et al. (2019), seafood waste is frequently burnt, buried in 
landfills, dumped in the sea, or left to disintegrate. The disposal of food 
waste is a significant issue that industries and society face during food 
production. A large portion of the by-products generated by processed 
food remains unutilised, which might contain high-value compounds 
[1]. 

Living organisms in the ocean generate approximately 1012 –1014 

tonnes of chitin per year [1,2]. Chitosan, the second most abundant 
natural resource after cellulose, is the product of the deacetylation of 
chitin in seafood waste [3]. Chitin exists in a vast variety of biomass, 
including fungal cell walls, crustacean exoskeletons, insects [4], and fish 
scale as depicted in Fig. 1 [5]. Chitin exhibits non-toxic, biocompatible, 
and biodegradable polymeric properties but has inferior solubility at 
neutral pH [6]. 

Chitin is a linear amino polysaccharide comprised of poly-β(1–4)-N- 
acetyl-D-glucosamine [7]. The three crystalline allomorphs that vary in 
microfibrils orientation are recognised as α-chitin, β- chitin, and γ-chitin. 
The α-chitin comprised molecular chains arranged in an antiparallel 
arrangement. It is also the most abundant and easily accessible. The 
molecular structure promotes the formation of strong intermolecular 

hydrogen bonds, suggesting that it is the most stable. Meanwhile, mo
lecular chains in β-chitin, on the other hand, are bundled in paralleled 
configurations, resulting in weaker intermolecular forces. Ergo β-chitin 
has a lower stability than α-chitin. The parallel and antiparallel ar
rangements of γ-chitin indicate a mixture of the α- and β-forms [8]. Fig. 2 
displays the structures of chitin that comprised N-acetyl-D-glucosamine 
polysaccharides. Chitosan is produced after the deacetylation process of 
chitin. The applications of chitosan in drug delivery [9], tissue engi
neering technology [10], wound healing [11], and other applications 
are currently being explored. Some studies have also used chitosan to 
substitute other materials in electrical applications such as sensor, 
actuator and transducer [12]. 

2. Potential sources 

Following past studies, chitin is present in abundance in the shells of 
crustaceans, such as shrimp, crab, and lobster, and the cell walls of 
mushrooms, coral, algae, and nematodes. Chitosan, which is deacety
lated chitin, could be produced by treating chitin with a high concen
tration of sodium hydroxide [13]. Table 1 illustrates previous research 
on chitosan extraction. 

Chitosan becomes positively charged in acidic conditions due to 
–NH2 protonation, thus making it soluble in aqueous mediums [7]. 
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Additionally, Jampafuang et al. (2019) stated that the solubility of 
chitosan in aqueous acidic solutions is attributable to the amino and 
hydroxyl groups on the chitosan backbone. Nevertheless, to determine if 
the extracted chitosan has the ideal properties, it is necessary to 
comprehensively examine the isolated chitosan from a few perspectives, 
such as deacetylation, viscosity, moisture content, and ash content. 

2.1. Crustacean shells 

Annually, 18 to 30 million tonnes of fish waste are produced 
worldwide[30] . Kumari et al. (2015) stated that because of their high 
biological oxygen demand (BOD), chemical oxygen demand (COD), total 
suspended solids (TSS), fat–oil–grease (FOG), pathogens, organic 

matters, and other nutrients, fishery wastes, such as crustacean shells, 
are perilous to the environment [30]. Despite the potential dangers, fish 
waste is abundant in the ecosystem and has the potential to be trans
formed into valuable resources. 

Although chitosan has various applications in biotechnology, agri
culture, and medicine, only shrimp, crab, and krill have been recognized 
as commercial sources for this compound. The reason behind this is that 
chitosan is primarily derived from crustaceans since their skeletons are 
readily available as by-products of food processing [31]. Crustacean 
shells are primarily composed of chitin, protein, and mineral salts. A 
mineral-protein matrix integrated into the chitin network in the crus
tacean shells makes it stiff. As a result, demineralisation and deprotei
nisation are necessary to isolate the chitin [32]. Deacetylation removes 
the acetyl in the chitin, thus resulting in a residue known as chitosan. 
Deacetylation is relatively simple in shrimps and fish compared to the 
deacetylation of crab shells. However, shrimp shells are the best option 
because the physicochemical properties of the chitin obtained are close 
to those of commercially manufactured chitosan [33]. Table 2 displays 
previous investigations on extraction of chitin and chitosan from crus
tacean sources. 

2.2. Fish scale 

Fish scales are regarded as garbage and produced on a considerable 
scale, 1% of the total weight of a fish, making it one of the leading 
sources of pollutants in river systems in several nations [34]. The sub
stances constituted in fish scales include chitin, calcium, proximate, 
alkaloids, steroids, saponins, phenol hydroquinone, molisch, benedict, 
biuret, and ninhydrin [35]. According to Djais et al. (2021), the amount 
of chitosan in milkfish could reach 37.4% after dehydration. In addition, 
antimicrobial compounds found in fish scales with bone-like composi
tions could be employed as dental materials [35]. As a result, fish scales 
could be utilised for various purposes, including paper filling [36], 
biomass in energy generation [37], and heavy metal removal [38]. 

Previous research demonstrated that chitosan from fish scales could 
be isolated and used in novel water treatment techniques. Liaw et al. 
(2020) suggested that fish scale-extracted hydroxyapatite or chitosan 
composite scaffolds exhibited excellent ability to extract heavy metal 

Fig. 1. Common primary sources of chitosan.  

Fig. 2. Schematic diagrams of chitin and chitosan structures.  
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ions from wastewater. Their tenable channel sizes enable applications in 
numerous fields under static and flowing conditions [39]. On the other 
hand, fish scales comprise biologically active substances and a structure 
resembling bone tissue due to their type I collagen, hydroxyapatite, and 
unique collagen arrangement. The bio-composite scaffolds displayed 
cytocompatibility and exhibited promising effects as polymeric scaffold 
reinforcement agents, including bone tissue regeneration applications 
[40]. 

2.3. Fungi and mushroom 

Fungi are the second-largest community of organisms on the planet, 
with an estimated population of 5,100,000 individuals and over 70,000 
species [41]. Having similar structures to crustaceans, approximately 1 
to 15% of the mass of fungal cell walls is chitin, making them the second 
most common source of chitin after crustaceans [42]. According to 
Lopez-Moya et al. (2019), chitosan is a defensive modulator in plants. 
The cell walls of fungal consist of chitin and β-glucan oligomers, which 
are biosynthesized by chitinases and glucanases [43]. 

According to Joseph et al. (2021), chitosan isolated from crab and 
fungi exhibited more effective free radical scavenging potentials than 
the chitosan obtained from insects and shrimps[56]. In addition, fungi 
did not require the same severe acid treatment as crustaceans to purify, 
demineralise, and remove calcium carbonate and other minerals to 
obtain their chitosan [44]. 

Poverenov et al. (2018) reported that high-quality mushrooms were 
not necessarily the only source of chitosan but wastes from the mush
room business might also be utilised. Moreover, after solid-state 
fermentation, edible mushrooms such as Agaricus sp., Pleurotus sp., and 
fungi, including Ganoderma sp., were considered sources of chitosan 
[58,59]. Table 3 lists the findings of previous researchers. 

2.4. Insects 

Chitosan is commonly derived from wastes from the food and fishing 
sectors, such as shrimp and crab. Nevertheless, due to the constraints in 
raw material supply, such as seasonal and geographical obstacles, recent 
research has concentrated on searching for alternative sources. Insects 
have certain advantages over crustaceans in that they are not seasonal 
and could readily be reproduced due to their high fertility and repro
ductive rate. Furthermore, insect-breeding services are springing up 
worldwide [42]. Consequently, several insect species have been inves
tigated and identified as potential biopolymer sources. 

Berezina and Hubert (2019) reported that they divided insects into 
three main categories, flying (flies and butterflies), jumping (crickets 
and grasshoppers), and others. Flying insects require a high amount of 
energy to fly. Hence, their pulp and cuticles comprised a high-fat con
tent, typically exceeding 50%. On the other hand, jumping insects 
employ their muscles. Therefore, their protein content was significantly 
higher, approaching 80% [53]. The rest of the insects were usually in 

Table 1 
Previous research on chitosan isolation from various raw sources.  

Source The 
degree of acetylation 

The degree 
of deacetylation 

Intrinsicviscosity  
(η) 

Molecular Weight Moisture content Ash content Ref.  

(DA) (DDA)      

Horseshoe crab  86% 98.80 cP 187,128.42 
gmol− 1   

[14] 

Blue crab 8%  3432 115 kDa   [15]    
mL/g     

Chilean 4%   201 ± 5   [16] 
crab    kDa    
Sand crab  70.85%   9.78% 0.48% [17] 
Macropipus  82.5% 432 ± 11 194 ± 60 9.49 ± 1.7  [18] 
holsatus   mL/g kDa %   
crab        
Litopenaeus  84.76 %  235 kDa  0.08 % [19] 
vannamei        
shrimp        
Solenocera  85 ± 0.38 % 15.67 ± 52.61± 1270 ± 11  [20] 
hextii   0.58 cP 0.44 kDa %   
shrimp        
Litopenaeus  79%  260 kDa   [21] 
vannamei        
shrimp        
Litopenaeus  90.7%  140 kDa  9% [22] 
vannamei        
shrimp        
Iraqi  52% 19 cp 102.5 KDa 6.2% 0.72% [23] 
Shrimp        
Cuttlefish 

bones 
79%   620 × 103 

gmol− 1   
[24] 

Illex  85.4%  98.8 3   [25] 
Argentinus    KDa    
squid pen        
Loligo  89.72 ± 0.37 3.24 ± 1.2 × 105   [26] 
formosana   0.02 Da    
squid pen   (dL/g)       

96%  8 kDa 10.05 ± 0.03 0.43 ± 0.01% [27] 
Squid pen     %   
B. magna  89.89 ± 1.34 491.88 ± 696.95 ± 34.28 ± [28] 
insect  % 3.11 

mL/ g 
4.73 g 
mol− 1 

0.21 %   

B.  80.5%   3.33 % 1.00 % [29] 
portentosus        
house        
cricket         
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between the two categories. The considerations are critical in the 
extraction and purification of chitin contained in the cuticles of insects. 

According to Saenz-Mendoza et al. (2020), the chitin derived from 
Brachystola magna and Tenebrio molitor were 10.4% and 11.6%, 
respectively, making them potential sources of chitin. Besides, Tenebrio 
molitor was able to be artificially bred using simple and low-cost pro
cesses. The dry weight (DW) chitin and chitosan yields from Bombyx 
mori, Ephestia kuehniella, Dendrolimus punctatus, Argynnis pandora, and 
Clanis bilineata were 2.59–56%, 3.1–88.40%, 9.5–10.5%, 8–22%, and 
31.37–96.2%, respectively [54]. Consequently, the extraction of chito
san from insects gained attention as its sources are easy to cultivate. The 
numerous potential applications of chitosan isolated from insects are 
presented in Table 4. 

3. Extraction methods 

3.1. Chemical method 

Varun et al. (2017) reported that the traditional chemical approach 
was frequently employed to isolate chitin. Although chemical extraction 
is environmentally damaging, inefficient, alters the physical and 
chemical properties of chitin, and eliminates minerals and proteins, the 
technique has been the most widely utilised on a commercial scale [78]. 

Demineralisation, deproteinisation, and deacetylation are the three 
main steps in the chitosan extraction process as depicted in Fig. 3. The 
demineralisation stage is conducted in a dilute hydrochloric acid solu
tion. The step removes calcium carbonate and calcium chloride, the key 
inorganic compounds in crustacean exoskeletons [79,80] . Subse
quently, using various organic and inorganic solvents such as sodium 
hypochlorite, acetone, and hydrogen peroxide, an optional step called 
decolourisation might be applied to remove any pigments present, pri
marily Astaxanthin and β-carotene [64]. 

The deproteinisation step involves the depolymerisation of the 
biopolymer by breaking the chemical bonds between proteins and chitin 
using chemicals. Sodium hydroxide at concentrations between 0.125 
and 5.0 M is utilised, with various temperatures and treatment dura
tions. Sodium hydroxide results in deproteinisation, biopolymer hy
drolysis, molecular weight loss, and partial chitin deacetylation [65]. 

Deacetylation removes the acetyl groups from chitin and replaces 
them with reactive amino groups. The percentage of free amino groups 
within a structure is determined by the degree of deacetylation, which 
could help differentiate chitin from chitosan. Alkalis are considered the 
safer chemical alternative for this step because glycosidic bonds are 
highly vulnerable to acids [54]. Therefore, sodium hydroxide solution 
within the 45–50% range is generally employed [66]. 

Lee et al. (2017) claimed that the chitosan extracted from blue crab 

Table 2 
Previous research on extraction of chitin and chitosan from crustacean sources.  

Sources Species Degree of 
deacetylation 
(DDA%) 

Yield 
(%) 

Finding Potential 
applications 

Ref 

Crab Chionoecetes   As effective Medical [35] 
shell opilio   antimicrobial industries      

agent   
Prawn  69.9%  Utilized fungal Cost-effective [36] 
shell    fermentation to microbial      

recover chitin fermentation      
from prawn       
shells   

Crab  89%  Regenerate Blending [37] 
shell    chitosan from medium of      

BMIMCI polymer.  
Crab S.olivacea 53.4% 44.57% Good Medical [38] 
shell    antioxidant industries      

properties   
Crab  60.69% 41.29% Optimize chitin Drug delivery [39] 
shell    recovery by       

fermentation   
Blue crab Callinectes  77.78% Increasing the Polymeric [40] 
shell sapidus   crosslinker scaffold –      

concentration tissue      
affected the engineering      
properties of       
cryogels   

Shrimp  70.96%  Optimum Alternative [41] 
shells    efficiency of Pb way to treat      

removal by heavy metal      
absorption of       
chitosan   

Shrimp Penaeus  35% Anticancer Pharmaceutical [42] 
shells monodon   activity of chitin industries      

and chitosan       
against human       
ovarian cancer       
cell line   

Shrimp shells  88%  Removal of Eriochrome black T 
from aqueous solutions and as alternatives to 
expensive 
adsorbents 

Dye removal [43] 

Horse mussel 
shell 

Modiolus 
modiolus 

57.43% 10.21% Chitosan’s antimicrobial effectiveness 
against a diverse range of 
microorganisms 

Biomedical applications [44] 

Lobster shell Thenus 
unimaculatus  

35% Antioxidant scavenging effects on the major 
free radicals 

Antioxidant, anti-diabetic and anticoagulant 
agents in pharmaceutical 
applications 

[45]  
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and shrimp shells deproteinised using calcium oxide and then deacety
lated did not require the demineralisation stage. The approach required 
less chemical consumption while still protecting the environment [67]. 
Compared to crustacean shells, fungal mycelia comprised less inorganic 
materials, and no demineralisation treatment was needed during pro
cessing [68]. 

3.2. Biological method 

The application of highly concentrated mineral acids in the bio- 
extraction of chitin and chitosan has recently sparked interest due to 
the various challenges that the chemical technique presents, such as 
energy consumption, risk of harm, and environmental threat [69]. 
Several biotechnological techniques were developed to address the 
limitations of chemical chitin purification and are considered effective 
alternative approaches for recovering high-quality chitin [70]. Enzy
matic deproteinisation and fermentations utilising microorganisms are 
the two most widely used biological methods for chitin extraction [65]. 

The combination of lactic acid fermentation by Lactobacillus with 
demineralisation and deproteinisation by proteolytic bacteria shows 
potential for further research. These microbial processes offer environ
mentally sustainable and beneficial advantages when compared to 
traditional chemical methods [70]. Younes et al. (2014) suggested 

employing proteolytic microorganisms or proteolytic enzymes as 
another approach. Compared to chemically prepared shellfish, chitins 
obtained after the deproteinisation of shrimp shell waste with various 
proteolytic microorganisms exhibited higher molecular weights [71]. 

The high cost of purified enzymes is a disadvantage of the biological 
method. On the other hand, due to coexisting proteases, specific mi
crobial enzyme preparations might be used for deproteinisation, making 
the method inexpensive and more effective. Nonetheless, although 
biological extraction is a less expensive and safer option for chitin 
isolation, it is only available on a laboratory scale [65]. 

3.3. Microwave irradiation 

Recently, microwave irradiation has received much interest because 
the method could speed up reactions by order of magnitude compared to 
traditional heating. The conventional demineralisation, deproteinisa
tion, decolourisation, and deacetylation technique could take up to two 
days to fully extract chitosan [72]. The concept underlying microwave 
heating is the generation of an electromagnetic field that stimulates 
vibrations on molecular levels of materials. Microwave irradiation for 
chitin deacetylation was demonstrated to be more efficient than the 
traditional heating approach. Moreover, a high degree of deacetylation 
was reached by employing microwave heating for a few minutes [73]. 

Table 3 
The findings on fungi/mushroom chitosan from previous studies.  

Sources Species Degree of deacetylation (DDA%) Yield Finding  Potential 
applications 

Ref 

Fungi Auricularia sp. 86.81% 5.81% Compared to commercial  Medical [45]     
chitosan, the chitosan  industries      
isolated from Auricularia        
sp. had better antibacterial        
activity against both        
Gram-positive and Gram-        
negative bacteria.    

Fungi Tricholoma   Chitosan-fungal extract  Food [46]  
terreum   films were discovered to  packaging      

have substantially stronger  technology      
anti-quorum sensing and        
antibacterial activity than        
gentamicin.    

Fungi Rhizopus 72.51% 0.288 g/l Because of the large  Medical [47]  
oryzae   molecular weight,  industries      

extracted chitosan had        
better antioxidant activity        
than shrimp chitosan.    

Fungi Amylomyces 88.7%  The antimycotic activity  Health care [48]  
rouxii   of the finished textiles  disciplines      

with Flu/NACT        
nanoconjugates was        
improved.    

Fungi Aspergillus  53.8% The extracted chitosan  Treatment for [49]  
flavus   increased antibiotic  bacterial      

antibacterial activity and  infection      
exhibited synergistic        
effects.    

Mushroom’s Lactarius  73.1% Both can be used as an  Antimicrobial [50]  
cell wall vellereusalternative chitin sourceand        
Phyllophora ribis  75.3%   antioxidant agents  

Mushroom’s Agaricus  46 wt% The filters may also aid in  Water [51] 
cell wall bisporus   lowering the  treatment      

environmental effect of        
typical membrane        
production procedures.    

Mushroom’s Ganoderma 85%  When compared to similar  Antimicrobial [52] 
cell wall lucidum   crustacean products, they  agents      

had lower viscosity and        
MW. These features, in        
combination with the high        
DD, allow mushroom        
chitosan to be easily        
processed and has a high        
bioactivity.     
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Microwave heating instead of conventional heating would minimise 
chitosan extraction time from hours to minutes while achieving the same 
degree of deacetylation. The reactants are stimulated non-uniform and 
slowly during traditional heating, while microwave heating occurs at 
the molecular level, resulting in a uniform rapid temperature rise [74]. 
As a result, the deacetylation time for chitosan isolation through mi
crowave heating decreased from 180 to 60 min. Furthermore, the same 
degree of deacetylation (DDA) percentage was achieved using the same 
amount of heat [73]. According to H. EL Knidri et al. (2019), the 
deacetylation method used sodium hydroxide (NaOH) at a lower con
centration, 30%, compared to the traditional process at 40–50%. 
Therefore, microwave heating is more environmentally friendly, offers 
fewer chances of damage, and requires fewer chemical expenses [75]. 

Titik et al. (2018) reported that extraction via microwave irradiation 
enhanced reaction speed and affected the protein content. The greater 

the power of the microwave, the faster the reaction time. Microwave 
heating is substantially more effective than conventional heating for 
demineralisation as every molecule in the solution that interacts with 
the microwave generates heat, ensuring homogenous heating [76]. 
Mahardika et al. (2019) reported that microwave-irradiated chitosan 
with a 40-minute reaction time exhibited a greater absorbance than 
traditionally isolated chitosan that required a 120- minute (2 h) reaction 
time. Resultantly, the degree of deacetylation of microwave irradiated 
chitosan was higher [77]. 

4. Emerging applications 

4.1. Piezoelectric 

New uses for chitosan are being explored in various fields, including 

Table 4 
The studies on chitosan extraction from insects and their potential applications.  

Sources Method of harvest (source) Yield of chitin/ 
chitos an 

Degree of deacetylation 
(DD) 

Molecular 
weight 

Potential applications Ref. 

Brachystola Collected 10.4%   Transparent [28] 
magna from local    film for food   

field    packaging  
Tenebrio Artificial 11.6%   Packaging for  
molitor breeding    UV sensitive       

food  
Hermetia Breeding 47% 43%   [55] 
illucens of larvae      
Tabanus Collected  60.77%  Drug carrier [56] 
bovinus from field      
Hermetia Obtained 1.56% 91.3% 88.600 Potent [57] 
illucens from insect   Dalton Antimicrobial   

farm    and Wound       
Healing       
Composites  

Gryllus Obtained 41.75% 84.98%  Nanocapsules [58] 
bimaculatus from insect       

farm      
Zophobas morio Obtained from insect 4.60% 80%  Antibacterial [59] 
Allomyrina dichotoma farm 10.53% 83.37%  material for food, environmental , fiber 

industries  
Tenebrio molitor Obtained from insect 

breeding site 
31.9% 53.9%  Food industry [60] 

Acheta Obtained 69.0 80% 344 kDa Hypolipidemi [61] 
domesticusfrom insect c 

and       
Gryllodes sigillatus farm 62.3 80% 524 kDa Antimicrobial Agent  
Ephemeropter Collected 78.43% 84.3% 3.69 kDa Anti- [62] 
a from field    proliferative       

material  
Tenebrio Obtained 3.65% 92.16%  An [63] 
molitor from insect    oligosaccharid   

laboratory    e source for       
pet, animal,       
and human       
nutrition.   

Fig. 3. General flow of chitosan isolation.  
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the developing field of biodegradable piezoelectric energy harvesters 
and sensors. To continually power various electrical appliances, the 
materials used in this application must have inherent piezoelectric 
properties, or the capacity to produce electrical charges when subjected 
to mechanical stress [78]. The piezoelectric properties of chitin and 
chitosan are attributed to the intrinsic molecular polarisation resulting 
from the non-centrosymmetric crystal structure of α-chitin and β-chitin 
polymorphs [79]. Ahmad et al.’s research revealed the potential of 
chitosan for piezoelectricity, despite focusing solely on indirect piezo
electricity and using chitosan in powder form. However, a comprehen
sive understanding of chitosan’s piezoelectric properties requires 
further exploratory research [79]. This investigation should involve 
studying chitosan in various forms beyond powder, to explore its direct 
piezoelectric properties such as piezoelectric coefficient. Additionally, 
researchers could explore different processing techniques and condi
tions to optimize the material’s piezoelectric performance. By con
ducting a more extensive exploration, scientists can fully uncover 
chitosan’s piezoelectric capabilities, which may have applications in 
various fields like sensors, energy harvesting devices, and biomedical 
applications. 

A potential difference is produced when a compressive or tensile 
force is applied to piezoelectric materials, referred to as the positive 
piezoelectric effect. On the other hand, an inverse piezoelectric effect 
occurs when an electric field is applied to a piezoelectric component, 
causing mechanical stress. There are a few main parameters to consider 
during the evaluation of the efficiency of piezoelectric materials. First is 
the piezoelectric coefficient, which shows how the mechanical and 
dielectric properties of piezoelectric bodies are related. The electrome
chanical coupling coefficient (k), representing the degree of energy 
transformation, is the second parameter [80]. Two other critical re
quirements for a material to be considered as an excellent piezoelectric 
material are a high value of dielectric permittivity (ε) and a low dissi
pation factor or dielectric loss (tan δ) [81]. 

4.2. Biomedical 

Pellá et al. (2018) reported that chitosan is a polysaccharide that 
demonstrated biomaterial growth properties, including biocompati
bility, biodegradability, non-toxicity, and low cost. Additionally, chito
san has long been used for wound healing due to its hemostatic 
properties [82]. Chitosan hastens wound healing through interactions 
between its amino groups and platelets [83]. Chitosan could also be 
degraded in vivo by several enzymes, the most common lysozyme, a 
generalised protease found in all mammalian tissues [84]. 

The cationic nature and electrostatic contact with nucleic acids make 
chitosan an effective drug carrier and immune adjuvant for cancer 
vaccines. Generally, chitosan has been widely applied in numerous 
biomedical applications, including an antibacterial agent in wound 
dressing, gene delivery [85], tissue engineering, and peripheral nerve 
[86]. Moreover, chitosan is also utilised as nano-sized drug carriers to 
target cancerous cells in melanoma, bladder, lungs, breast, colon, 
pancreatic, and metastatic cancer treatments [87]. 

4.3. Sensing layer 

A sensor is a device that employs a biological element as the sensing 
element and a transducer to detect a quantifiable signal. According to 
Muthusankar and Ragupathy (2018), biosensors are expected to play a 
critical role in clinical and non-clinical applications because of their 
specificity, mobility, rapid reaction time, durability, and low cost. 
Biosensor systems utilise isolated enzymes, immunosystems, tissues, 
organelles, or entire cells to facilitate specific biochemical reactions 
aided by isolated enzymes, immunosystems, tissues, organelles, or 
whole cells to detect chemical molecules [104] . 

Biosensors comprise three main parts, receptor, transducer, and 
electronic parts. The receptor forms the sensing layer. A receptor might 

be a biological or non-biological substance that could capture and 
interact with target analytes [105] . Selectivity, sensitivity [106] , 
response time, recovery time, detection limit, stability[107] , and line
arity of response [88] are all critical qualities in the sensing layer. These 
characteristics provide a foundation for understanding the capabilities 
of each biorecognition element and how the biorecognition element 
selection measures the behaviour of the biosensor. 

High sensitivity is defined as a substantial detectable change in the 
signal transmitted by the biosensor due to modest changes in the con
centration of bioanalytes [89]. The limit of detection (LOD), the smallest 
amount of an analyte that might cause a recognisable output signal, 
reflects the sensitivity of a system [90]. The sensor should also have a 
broad working range (linear range), which determines the range of an
alyte concentration that the sensor could detect. Additionally, the linear 
response range of the system should span the concentration range in 
which the target analyte would be monitored. Ideally, the response time 
should be short enough to allow for efficient real-time monitoring of the 
target analyte. However, the recovery time should be long enough to 
allow reusability of the biosensor system [88]. 

Natural polymer materials, such as cellulose and chitosan, are low- 
cost and environmentally sustainable with a strong gel-forming capac
ity, thus making them ideal for use in biosensor fabrication. Chitosan, a 
widely used natural polymer, has physical advantages involving excel
lent mechanical properties, hydrophilicity, easy operation, and chemical 
advantages, including biocompatibility and bio-environmental stability 
[91]. Table 5 tabulates the characteristics of the sensing layer in bio
sensors investigated in previous research. 

4.4. Food packaging 

The extensive usage of conventional plastic packaging has contrib
uted to environmental pollution. One of the options to avoid non- 
renewable petroleum-based plastics packaging is to employ biodegrad
able materials. Ashrafi et al. (2018) elucidated that active packaging is a 
cutting-edge concept that could be characterised as a type of packaging 
in which the product and the environment interact to extend shelf life, 
improve safety, or enhance sensory characteristics while retaining 
product quality [101]. 

Chitosan could be dissolved in dilute acidic solutions and formed into 
different materials, including edible films. Several types of chitosan- 
based films could be employed in food packaging materials, including 
pure chitosan films, chitosan/biopolymer films, chitosan/synthetic 
polymer films, and chitosan derivative films. Pure chitosan films were 
reported to delay qualitative and nutraceutical feature shifts, prevent 
microbial development, retain antioxidant activity, and extend shelf life 
[102]. Nonetheless, the value of deacetylation of chitosan was demon
strated to affect its acid-catalysed breakdown, where the degradation 
rate constant increased as the deacetylation value increased [103]. 
Chitosan forms dimers in acetic acid solution, indicating that the 
intermolecular interaction is quite strong, and chitosan films produced 
with acetic acid comprised a more compact structure than those fabri
cated with other acid solutions [104]. 

Chitosan is known for its antioxidant and antimicrobial properties. 
However, chitosan possesses disadvantages, such as low mechanical and 
thermal stability and high moisture sensitivity, limiting its industrial 
applicability. Blending chitosan with other biopolymers to combine 
their benefits while minimising their disadvantages is a technique 
employed to overcome these difficulties [105]. Furthermore, the prop
erties of chitosan films enable them to be fabricated to acquire excellent 
mechanical qualities, selective permeability to carbon dioxide and ox
ygen, and antibacterial capabilities, which could be applied directly in 
food industries to promote food safety and shelf life [106]. Table 6 
displays previous studies on food packaging from chitosan film. 
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5. Conclusion 

Biopolymer chitosan has gained popularity because of its attractive 
qualities, including biodegradability, biocompatibility, and non- 
toxicity. Notably, biopolymer chitosan can be obtained from two pri
mary sources: recycling fishery waste, including crustacean shells and 
fish scales, or through cultivation from fungi, mushrooms, and insects. 
These raw materials are readily available and cost-effective, contrib
uting to the sustainability of chitosan production. To isolate chitosan 
from its raw sources, different extraction methods are available, ranging 
from chemical and biological methods to the use of microwaves. These 
extraction techniques offer flexibility and options for optimizing the 
yield and properties of chitosan, making it suitable for diverse applica
tions. Several investigations have showcased the versatility of chitosan 
in various industrial settings, demonstrating its potential in biomedi
cine, pharmaceuticals, packaging, and energy harvesting. Its biocom
patibility and non-toxic nature make it an attractive choice for medical 

and pharmaceutical applications. Additionally, its ability to form films 
and coatings enhances its use in packaging materials, while its potential 
in energy harvesting opens up new possibilities for sustainable tech
nologies. Despite the promising attributes of crustacean shells and 
fishery waste as sources for chitosan production, they are currently 
underutilized. Unlocking the full potential of these resources requires 
further research and a more thorough investigation of their applications. 
By exploring these untapped sources and conducting in-depth studies, 
we can enhance the utilization of chitosan in industrial sectors and 
contribute to a more sustainable and environmentally friendly future. 
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