Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Back

Simplified cochlear frequency selectivity measure for sensorineural hearing loss screening: comparison with digit triplet test (DTT) and shortened speech, spatial and qualities of hearing scale (SSQ) questionnaire

European Archives of Oto-Rhino-Laryngology • Article • 2023 •

Abstract

Purpose: Pure-tone audiometry (PTA) is the gold standard for screening and diagnosis of hearing loss but is not always accessible. This study evaluated a simplified cochlear frequency selectivity (FS) measure as an alternative option to screen for early frequency-specific sensorineural hearing loss

(SNHL). Methods: FS measures at 1 and 4 kHz center frequencies were obtained using a custom-made software in normal-hearing (NH), slight SNHL and mild-to-moderate SNHL subjects. For comparison, subjects were also assessed with the Malay Digit Triplet Test (DTT) and the shortened Malay Speech, Spatial and Qualities of Hearing Scale (SSQ) questionnaire. Results: Compared to DTT and SSQ, the FS measure at 4 kHz was able to distinguish NH from slight and mild-to-moderate SNHL subjects, and was strongly correlated with their thresholds in quiet determined separately in 1-dB step sizes at the similar test frequency. Further analysis with receiver operating characteristic (ROC) curves indicated area under the curve (AUC) of 0.77 and 0.83 for the FS measure at 4 kHz when PTA thresholds of NH subjects were taken as \leq 15 dB HL and \leq 20 dB HL, respectively. At the optimal FS cut-off point for 4 kHz, the FS measure had 77.8% sensitivity and 86.7% specificity to detect 20 dB HL hearing loss. Conclusion: FS measure was superior to DTT and SSQ questionnaire in detecting early frequency-specific threshold shifts in SNHL subjects, particularly at 4 kHz. This method could be used for screening subjects at risk of noise-induced hearing loss. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Author keywords

Affordable hearing test; Frequency selectivity; Hearing screening; Sensorineural hearing loss

Indexed keywords

MeSH

Audiometry, Pure-Tone; Auditory Threshold; Hearing; Hearing Loss, Noise-Induced; Hearing Loss, Sensorineural; Humans; Speech; Surveys and Questionnaires

EMTREE medical terms

adult; aged; Article; auditory screening; auditory threshold; controlled study; digit triplet test; disease severity; ENT examination; female; frequency analysis; human; major clinical study; male; middle aged; noise injury; perception deafness; receiver operating characteristic; risk assessment; sensitivity and specificity; software; speech spatial and qualities of hearing scale; hearing; noise injury; procedures; pure tone audiometry; questionnaire; speech

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Malay DTT		
University of Canterbury See opportunities by UC 7		UC
Universiti Malaya See opportunities by UM	GPF005A-2020	UM

Funding text 1

The authors thank Dr Hong Yet Hoi for his help in formulating the study design. Prof. Greg O'Beirne (University of Canterbury) designed the Laboratory Virtual Instrument Engineering Workbench (LabVIEW) software used for the Malay DTT.

Funding text 2

This work was supported by University of Malaya Faculty Research Grant (GPF005A-2020).

Corresponding authors

Corresponding author	K. Seluakumaran
Affiliation	Auditory Lab, Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
Email address	kumarselvakumaran@um.edu.my

© Copyright 2023 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords

Funding details

Corresponding authors