الجامعة السلمية العالمية ماليزيا INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA وَنِنْبَرَسِنْتِي الشِلِحْرُ الْبَجَارَ الْجَعْبَ مِلْكِسِنْتِ

Environmental Biotechnology for Sustainable Development

Prof. Dr. Md. Zahangir Alam

Bioenvironmental Engineering Research Centre Department of Biotechnology Engineering Kulliyyah of Engineering, International Islamic University Malaysia

https://www.youtube.com/watch?v=GnYHFRq7-5s

Biotechnology: Recent Advances for Sustainable Development

Environmental Biotechnology

http://www.iium.edu.my

الجامعة العالمية العالمية ماليزيل INTERNATIONAL ISLAMIC UNIVERSITY MALAISIA يُرْيَنْجُرَسْتِي لَيْكِرْ لَوْجَارَا بَحْيَارَ الْحَيَارَ

Towards a bio-based society

Source: The Research Council of Norway

Sustainable Biotechnology

Budget boost for bioeconomy

Background of Resource Recovery from Wastewaters

Wastewater Treatment Plant

Fungal strains from STP sludge

Penicillium

Others

Aspergillus

Trichoderma

Distribution of filamentous fungi in wastewaters

Isolation sources

Liquid State Bioconversion of Sludge

(a) Penicillium corylophilum

(b) Control

http://www.iium.edu.my

INTERNATIONAL ISLAMIC UNIVERSITY MALAVSIA

Liquid State Bioconversion of Sludge

Lower solid content of sludge (1% TSS)

Higher solid content of sludge (2-3% TSS)

الجامعة المامية العالمية ماليزيا INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA يُوْنَيْنُوْنِيْنِيْ وَالْبَارِ الْجَارَا الْحَيْرَا عَلَيْهِ مَنْ

Dewaterability/filterability

Reduction of COD

M icrobes

Treated Sludge as Pellets

Focus in Green Technology for sustainable development

- Technologies/processes for converting waste to reusable/valuable materials that generate revenue.
- Potential microorganisms and their metabolites (enzymes) involve to convert different waste into value added bio-products.
- Environmental Biotechnology offers such solution for making income from waste.

الجامعة المامية العامية ماليزيا INTERNATIONAL ISLAMIC UNIVERSITY MALAISIA & يُوْنِيْبَرِيْسِيْنَ إِنِّيْلِكُرُ إِنِّيَارًا بِحَيْنَ مِلْكِيْتِ يَا

IWK Treatment Plant

Sustainable Bio-products

Biofuels

- Bioethanol from lignocellulosic waste
- Biodiesel from low grade and non-food oils
 - **Biogas from IWK sludge and POME**
 - Biocatalyst (cellulase, lipase, amylase, protease, ligninase, etc.) from organic waste i. e. IWK sludge, POME, EFB, PKC, etc.

- □ Utilization of a cheap and renewable substrate that greatly lessen the production cost for value added products i.e. enzymes, bioethanol, biodiesel, etc.
- Exploiting renewable resources for the alternative of existing raw materials for value added applications.
- Introduce environmental/eco friendly waste treatment system for better environment and life for sustainable development.

Case Study: Cellulase from IWK sludge

IWK sludge

❑ About 6 million cubic meters of sewage sludge is produced by Indah Water Konsortium (IWK) annually in Malaysia and the total cost of managing was estimated as more than RM 1 billion.

■Wastewater sludge is very good source of carbon, nitrogen, phosphorus, and other nutrients for many microbial processes that could add value to sludge by producing certain valuable metabolic products.

Characteristics of sludge

Parameters	STP sludge
%C	32.2
%N	3.6
C/N	8.9
P(mg/kg)	14,000
K (mg/kg)	502
Ca (mg/kg)	1281
Mn (mg/kg)	405
Na (mg/kg)	171
Cu (mg/kg)	69
Zn (mg/kg)	291

Renewable Sludge for Cellulase Production

http://www.iium.edu.my

الجامعة المامية العالمية ماليزيا INTERNATIONAL ISLAMIC UNIVERSITY MALAISIA (وَيُنْجُوْسَتِيْ الْبُولِارْيَا الْجَازَا بَعْتِي بْلَيْمِنْتِيَا

Set up of pilot plant for cellulase production

Cellulase production at pilot scale

http://www.iium.edu.my

الجامعة المالمية العالمية مالين يا INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA يۇنيتر نيتى ئىزىلار ئابتارا بغتيا باللېنى ت

Cellulase: (a) fermentation broth including biomass; (b) cellulase from centrifugation; (c) cellulase from 0.45 µm microfiltration

Production cost and income

Basis: 250 L of sludge/cycle@40 cycles per year

		Cost
Save	Total sludge management cost/year for 16.25 m ³ of sludge	RM 500
Expenditure	Total cellulase production cost/year for 800 L: (require 16.25 m ³ of sludge)	RM 65,000
Income	Current market price of cellulase for same amount	RM400,000 (800L @RM 500)

An integrated waste management system at IIUM for sustainable development

Cost estimation at pilot scale compost

Item	Cost (RM)
Fixed Capital Cost	
Pilot scale composter (1000L/day)	800,000
Lab set up (building space and others)	100,000
Total	900,000
Annual operating cost	
Raw materials (recycling and transportation)	12,000
Utilities (Power, water, etc)	40,000
Manpower (2 workers@RM1500/month	36,000
Depreciation	90,000
Packaging and others	20,000
Total cost	198,000

Item	Cost (RM)
Total investment (R&D, equipment)	1,020,000
Selling price of compost (RM1.0/kg)	100,000
Management cost savings (40%)	326,400
Annual net profit	228,400
Return on investment (ROI)	4.4 years

IIUM BioLizer: Food Compost

IIUM BioLizer: Food Compost

IIUM BioLizer: FW Compost

A Holistic Model for Sustainable Development

Estimated Production of Biofuels from a typical palm oil mill (West Oil Mill)

Basis: 600 tons FFB/day

Future Direction for sustainable development

Based on capacity of 600 tons/day of FFB in a Mill with the recovery of Biodiesel, bioethnaol and cellulase enzyme, total production daily from 426 mills could be determined to explore the biofuels demand in Malaysia.

Bioethanol: 26,000 tons Biodiesel: 15,000 tons Cellulase: 51,000 tons

Conclusion

Environmental Biotechnology is expected to have a big role in developing the future for the betterment of lives towards sustainable development !!!!

Thank you

••••for your attention