### Itinerary

| DAY 1    |   |                                                 |
|----------|---|-------------------------------------------------|
| Date     | : | 25 <sup>th</sup> January 2022 (Tuesday)         |
| Platform | : | Face to Face                                    |
| Venue    | : | Endoscopy Suite Seminar Room, Sultan Ahmad Shah |
|          |   | Medical Centre @IIUM                            |

| TIME       | EVENT                                          |
|------------|------------------------------------------------|
| 0830-0900H | Registration and Light Breakfast               |
| 0900-0920H | Introduction of program by Organizing Advisor: |
|            | Assoc Prof. Dr. Mat Salleh Sarif               |
|            | Openingandofficiationby:                       |
|            | Asst. Prof. Dr. Ahmad Faidzal Othman           |
| 0920-0940H | 'Laparoscopic Training for General Surgeons'   |
|            | Assoc. Prof. Dr. Junaini bin Kasian            |
| 0940-1000H | Ergonomics in Laparoscopic Surgery             |
|            | Prof. Dr. Nasser Muhammad Amjad                |
|            |                                                |
| 1000-1020H | Introduction to Instruments and Set Up         |
|            | Br. Izzul Irfan bin Ahmad Nizam                |
| 1020-1100H | Tea Break                                      |
| 1100-1120H | Camera and Visualisation system                |
|            | KhaiUmmi Surgery (Karl Storz)                  |
| 1120-1140H | Power Instrument and Vascular Sealing system   |
|            | Asst. Prof. Dr. Mohd Yusof Sainal              |

| 4440 42000 | Dente Dent Destriction and Assess into Abdeman  |
|------------|-------------------------------------------------|
| 1140-1200H | Ports, Port Positioning and Access into Abdomen |
|            | Assoc. Prof. Dr. Mat Salleh Sarif               |
|            |                                                 |
| 1200-1220H | Pneumoperitoneum and its physiology             |
|            | Aast Duaf Du Chahidah Cha Alladi                |
|            | Asst. Prof. Dr. Shahidah Che AlHadi             |
| 1220-1240H | Dealing with Difficult Cases                    |
|            | Asst Brof Dr. Arrin Wahaadu                     |
|            | Asst. Prof. Dr. Azrin Waheedy                   |
| 1240-1400H | Lunch break                                     |
|            |                                                 |
| 1400-1420H | Anastomosis in Laparoscopic Surgery             |
|            | Asst Drof Dr. Eaisol S. A. Saad Elagili         |
|            | Asst. Prof. Dr. Faisel S. A. Saad Elagili       |
| 1420-1515H | Practical                                       |
|            |                                                 |
| 1515-1545H | Hi-Tea                                          |
|            |                                                 |
| 1545-1700H | Practical                                       |
|            |                                                 |
|            |                                                 |
| L          | 1                                               |

| DAY 2    |   |                                                 |
|----------|---|-------------------------------------------------|
| Date     | : | 26 <sup>th</sup> January 2022 (Wednesday)       |
| Platform | : | Face to Face                                    |
| Venue    | : | Endoscopy Suite Seminar Room, Sultan Ahmad Shah |
|          |   | Medical Centre @IIUM                            |

| TIME       | EVENT                                                             |
|------------|-------------------------------------------------------------------|
| 0830-0900H | Registration and Light Breakfast                                  |
| 0900-0920H | Role of Assistant in Laparoscopic Surgery                         |
|            | Assoc. Prof. Dr. IslahMunjih bin Ab Rashid                        |
| 0920-0940H | Common Laparoscopic Complications, Acute and Delayed:             |
|            | Recognition, Prevention and Management                            |
|            | Prof. Dr. Nasser Muhammad Amjad                                   |
| 0940-1000H | Recent Advances in Laparoscopic Surgery                           |
|            | Assoc. Prof. Dr. Mohd Nazli bin Kamarulzaman                      |
| 1000-1020H | Anaesthesia Considerations                                        |
|            | Asst. Prof. Dr. Mohd. Nizamuddin bin Ismail                       |
| 1020-1100H | Tea Break and Drug Talk by Karl Storz/ Olympus                    |
| 1100-1145H | Laparoscopic Cholecystectomy                                      |
|            | Assoc. Prof. Dr. Mat Salleh bin Sarif                             |
| 1145-1230H | Laparoscopic Inguinal and Umbilical Hernia Repair                 |
|            | Assoc. Prof. Dr. Junaini bin Kasian                               |
| 1230-1400H | Lunch Break                                                       |
| 1400-1445H | Laparoscopic Appendicectomy                                       |
|            | Prof. Dr. Azmi Md Nor / Asst. Prof. Dr. Faisel S. A. Saad Elagili |
| 1445-1515H | Practical                                                         |

| 1515-1545H | Ні-Теа                                                                       |
|------------|------------------------------------------------------------------------------|
| 1545-1630H | Practical                                                                    |
| 1630-1700H | Briefing on hands-on and Photography session<br>Pre-operative patient review |

## Bowel Anastomoses For Laparoscopic Surgery

Asst.Prof Faisal Elagili, MD,MS,FASCRS Consultant Colorectal and General Surgeon

### **General Considerations**

•A laparoscopic anastomosis follows the same basic principles as an open anastomosis.

•Surgeons typically use various modifications of three techniques

Hand sewn

Linear stapled

Circular stapled anastomosis (EEA).

### **General Considerations**

•An open surgery allows a surgeon to approach an organ for anastomosis from multiple angles.

•Laparoscopy restricts this to the angle formed by the trocar entry site and the organ's position.

•Organs with a high degree of mobility, such as the small bowel, are thus easier to join because they can be manipulated into a more favourable position than the duodenum or stomach cardia, which are largely fixed.

.Side to side anastomosis of the small bowel (

jejunojejunostomy in a gastric bypas)

End to side (gastrojejunostomy)

•Functional end to end configurations (Small bowel resection with primary anastomosis, Intracorporeal ileocolic anastomosis after laparoscopic right colectomy )

- The two bowel segments are broughtinto juxtaposition
- Single stitch placed between them
  The assistant lifts this stitch up with
  the right hand, suspending the
  bowel segments.



# •Enterotomies are created on the antimesenteric side



•Slips the cartridge and anvil aspects of the linear stapler cutter into the corresponding enterotomies

•Two limbs of intestine are advanced over the device similar to pulling up a pair of pants

•Stapler is fired to create the side to side anastomosis.







### Hand Sewn Anastomosis

Is appropriate for virtually any type of gastrointestinal

anastomosis

.Side to side

•End to side

• End to end

### Hand Sewn Anastomosis

•It usually takes more time.

•The suture line's axis in relation to the needle driver is crucial.

Provides some flexibility that stapled anastomoses do not.
Because each stitch is placed next to the one before it, an
astomosis is built up gradually, allowing for the joining of

### End to End Anastomosis (EEA)

•It is most useful when one of the ends being joined is immobile, such as the rectum, oesophagus, or upper stomach.

•It is quick, completing the entire anastomosis with a single squeeze of the handle.

Produces a uniform size lumen

#### Comparison of Hand-Sewn, Linear-Stapled, and Circular-Stapled Gastrojejunostomy in Laparoscopic Roux-en-Y Gastric Bypass

Frank P. Bendewald • Jennifer N. Choi • Lorie S. Blythe • Don J. Selzer • John H. Ditslear • Samer G. Mattar

Published online: 9 July 2011 © Springer Science+Business Media, LLC 2011

#### Abstract

Background There is no consensus on the ideal gastrojejunostomy anastomosis (GJA) technique in laparoscopic Roux-en-Y gastric bypass (LRYGB). We reviewed our experience with three GJA techniques (hand-sewn (HSA), linear-stapled (LSA), and 25-mm circular-stapled (CSA)) to determine which anastomosis technique is associated with the lowest early (60-day) anastomotic complication rates. Methods From November 2004 through December 2009, 882 consecutive patients underwent LRYGB using three GJA techniques: HSA, LSA, and CSA. All patients had a minimum of 2 months follow-up. Records were reviewed for postoperative gastrojejunostomy leak, stricture, and marginal ulcer, and these early complications were classified according to anastomosis technique. Multivariate analysis was performed to determine associations between complications and anastomosis technique.

*Results* Preoperative demographics, length of hospital stay, and postoperative follow-up did not differ between the three groups. The majority of patients underwent LSA (n=514, 61.6%) followed by HSA (n=180, 21.6%) and CSA (n=140, 16.8%). Using multivariate analysis, there were no statistically significant differences in the rates of

leak (LSA 1.0%, HSA 1.1%, CSA 0.0%, p=0.480), stricture (LSA 6.0%, HSA 6.1%, CSA 4.3%, p=0.657), or marginal ulcer (LSA 8.0%, HSA 7.7%, CSA 3.6%, p=0.180). *Conclusions* The three techniques can be used safely with a low complication rate. Our data do not identify a superior anastomosis technique.

Keywords Bariatric surgery · Anastomoses · Stapled · Technique

#### Introduction

The percentage of Americans who are morbidly obese (BMI ≥40) increased by over 50% between 2000 and 2005 [1]. Surgical weight loss is increasingly utilized as effective and durable therapy, and in 2009, approximately 220,000 bariatric operations were performed in the USA (www.asmbs.org/Newsite07/media/ASMBS\_Metabolic\_Bar iatric\_Surgery\_Overview\_FINAL\_09.pdf). Laparoscopic Roux-en-Y gastric bypass (LRYGB) has been shown to reduce mortality and improve quality of life in the morbidly obese [2, 3]. Numerous LRYGB techniques have been

### Intracorporeal anastomosis versus extracorporeal anastomosis for minimally invasive colectomy

Check 1

Rebecca F. Brown, Robert K. Cleary

Department of Colon and Rectal Surgery, St. Joseph Mercy Ann Arbor Hospital, Ann Arbor, MI, USA *Contributions:* (I) Conception and design: RK Cleary; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: RF Brown; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.



| Authors                                      | Year | MIS<br>type    | N (%IA)         | Operative<br>time (min),<br>IA <i>vs</i> . EA (P) | Conversion<br>to open (%),<br>IA <i>vs.</i> EA (P) | All complications<br>(%), IA <i>vs.</i> EA (P) |                               | AL (%), IA<br><i>vs.</i> EA (P) | lleus (%), IA<br>vs. EA (P) | IH (%),<br>IA <i>vs</i> .<br>EA (P) |                               | LOS (days),<br>IA <i>vs</i> . EA (P) | Study<br>design                                                    |
|----------------------------------------------|------|----------------|-----------------|---------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------|---------------------------------|-----------------------------|-------------------------------------|-------------------------------|--------------------------------------|--------------------------------------------------------------------|
| Feroci<br><i>et al.</i> (13)                 | 2013 | Lap            | 425<br>(47.5)   | No difference<br>(0.25)                           | N/A                                                | No difference<br>(0.16)                        | No<br>difference<br>(0.68)    | No<br>difference<br>(0.92)      | No<br>difference<br>(0.45)  | N/A                                 | N/A                           | Shorter in<br>IA (<0.01)             | Systematic<br>review and<br>meta-analys                            |
| Hanna<br>et <i>al.</i> (14)                  | 2015 | Lap            | 195 [44]        | 183 <i>vs</i> . 184.5<br>(NS)                     | 0 <i>vs</i> . 9.2<br>(<0.05)                       | 53 vs. 38<br>(<0.05)                           | 10 <i>vs</i> . 5.5<br>(<0.05) | 1.2 <i>vs</i> . 4.6<br>(NS)     | 22 vs. 8<br>(<0.05)         | N/A                                 | N/A                           | 5.0 <i>vs</i> . 5.0<br>(NS)          | Retrospectiv<br>review                                             |
| Shapiro<br><i>et al.</i> (15)                | 2015 | Lap            | 191 [48]        | 155 <i>vs</i> . 142<br>(<0.01)                    | 1.1 <i>v</i> s. 1.0<br>[1 <b>]</b>                 | 18.7 <i>vs</i> . 35<br>(0.01)                  | 4.4 <i>vs</i> . 14<br>(0.02)  | 0 vs. 3<br>(0.25)               | 6.6 <i>vs</i> . 10<br>(NS)  | 2.2 <i>vs</i> . 17<br>(<0.01)       | 0 vs. 2<br>(0.50)             | 5.9 <i>vs</i> . 6.9<br>(0.04)        | Prospective<br>comparative<br>study                                |
| Biondi<br><i>et al.</i> (16)                 | 2017 | Lap            | 116 [50]        | 196 v.s. 189<br>(0.25)                            | N/A                                                | 16.7 <i>vs</i> . 16.7<br>[1]                   | 3 vs. 6<br>(NS)               | 0 vs. 1<br>(NS)                 | 1 <i>vs</i> . 0<br>(NS)     | 1.9 <i>vs</i> . 21.2<br>(<0.01)     | 1.9 <i>vs</i> . 3.8<br>(0.54) | 4.8 <i>v</i> s. 6.8<br>(<0.01)       | Retrospectiv<br>review                                             |
| Akram<br><i>et al.</i> (17)                  | 2018 | Robot          | 110 [50]        | 168 vs. 142<br>(<0.01)                            | 0 <i>vs</i> . 12.7<br>(0.01)                       | 0.78 vs. 1.91<br>(<0.01)                       | 0 <i>v</i> s. 7.3<br>(0.12)   | 0 <i>vs</i> . 9.1<br>(0.06)     | 9.1 vs. 21.8<br>(0.11)      | 0 vs. 9<br>(0.06)                   | N⁄A                           | 3 <i>vs</i> . 3<br>(0.92)            | Retrospecti<br>propensity-<br>score<br>comparison<br>(single site) |
| Cleary<br><i>et al.</i> (9)                  |      | Lap &<br>Robot | 1,029<br>[37]   | 186 vs. 150<br>(<0.01)                            | 0.3 <i>vs</i> . 2.9<br>(0.01)                      | 5 <i>v</i> s. 8.9<br>(0.04)                    | 0.5 <i>vs</i> . 1.4<br>(NS)   | 0.0 <i>vs</i> . 0.9<br>(NS)     | 2.4 vs. 2.9<br>(NS)         | N/A                                 | N/A                           | 4 vs. 4.5<br>(0.02)                  | Retrospecti<br>propensity-<br>score<br>comparisor<br>(multiple sit |
| Ricci<br><i>et al.</i> (18)                  | 2016 | Lap            | 1,717<br>(50.3) | 129 <i>vs</i> . 121<br>(0.46)                     | 2.8 <i>v</i> s. 4.7<br>(0.41)                      | 27.6 vs. 38.4<br>(<0.01)                       | 4.9 <i>vs</i> . 8.9<br>(0.03) | 3.4 <i>vs</i> . 4.6<br>(0.12)   | N/A                         | 2.3 <i>vs</i> . 13.7<br>(0.02)      | N/A                           | 5 <i>vs</i> . 5 (NS)                 | Systematic<br>review and<br>meta-analy                             |
| van<br>Oosten-<br>dorp<br><i>et al.</i> (19) | 2016 | Lap            | 1,492<br>[51]   | N/A                                               | N⁄A                                                | Lower in IA<br>(OR 0.68)                       | Lower in IA<br>(OR 0.56)      | No<br>difference                | No<br>difference            | N/A                                 | N⁄A                           | Shorter by<br>0.7d in IA             | Systematic<br>review and<br>meta-analys                            |

MIS, minimally invasive surgery; SSI, surgical site infection; AL, anastomotic leak; IH, incisional hernia; SBO, small bowel obstruction; LOS, length of stay; N/A, data not included/provided in study; NS, no significant difference reported by authors.

Brown and Cleary. Intracorporeal anastomosis for colectomy

504

© Journal of Gastrointestinal Oncology. All rights reserved. J J Gastrointest Oneol 2020;11(3):500-507 | http://dx.doi.org/10.21037/jgo.2019.12.02

#### End to End Anastan Table 2 Outcomes comparison of intracorporeal (IA) and extracorporeal (EA) left hemicolectomies

| Authors                                            | Year | MIC   |                 |                                      | Conversion<br>to Open (%),<br>IA <i>vs.</i> EA (P) | All<br>Complications<br>(%), IA <i>vs.</i><br>EA (P) | SSI (%), IA<br><i>vs.</i> EA (P) | AL (%), IA<br><i>vs.</i> EA (P)  | lleus (%), IA<br><i>vs.</i> EA (P) | IH (%), IA<br><i>vs.</i> EA (P) | SBO (%), IA<br><i>vs.</i> EA (P) |                              |                                                                    |
|----------------------------------------------------|------|-------|-----------------|--------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------------|------------------------------|--------------------------------------------------------------------|
| Swaid                                              | 2015 | Lap   | 52 [63]         | 132 vs.                              | 0 vs. 0                                            | 12 vs. 33                                            | 0 vs. 5 (0.37)                   | 3 vs. 0<br>(0.37)                | 0 <i>vs.</i> 0                     | N/A                             | N/A                              | 4.2 vs. 6.3<br>(<0.01)       | Retrospective review                                               |
| et al. (21)                                        | 2018 | Robot | 114 [50]        | 124 (0.29)<br>193 vs.<br>160 (<0.01) | 5.26 <i>vs.</i><br>) 19.3 (0.03)                   | (not given)<br>0.579 vs.<br>0.737 (0.45)             | 1.75 <i>vs.</i><br>12.38 (0.06)  | 3.5 <i>vs.</i> 0                 | N/A                                | 0% vs.<br>10.5% (0.03           | N/A<br>)                         | 2.9 vs. 4.0<br>(0.18)        | Retrospective<br>propensity-score<br>comparison (single site)      |
| Milone                                             | 2018 | Lap   | 181 [51]        |                                      | 2 vs. 21                                           | 9.8 <i>vs</i> .                                      | 1 vs. 3*                         | 2 <i>vs.</i> 1*                  | N/A                                | N/A                             | N/A                              | 6.1 <i>vs.</i> 6.8<br>(0.08) | Multi-Institution case<br>control                                  |
| <i>et al.</i> (22)<br>Grieco<br><i>et al.</i> (23) | 2019 | Lap   | 72 [50 <b>]</b> | 154 (<0.01)<br>187 vs.<br>157 (0.07) | N/A                                                | 28.1 (<0.01)<br>0 <i>vs</i> . 13.9<br>(0.04)         | 0 <i>vs</i> . 8 (not<br>given)   | 0 <i>vs</i> . 2.8<br>(not given) | N/A                                | 2.8 <i>vs</i> . 16.7<br>(0.05)  | ∕ N/A                            | 6 <i>vs</i> . 8.5<br>(<0.01) | Retrospective<br>propensity-score<br>comparison (multiple<br>site) |
| Masubuchi<br><i>et al.</i> (24)                    | 2019 | Lap   | 40 [50]         | 222 vs.<br>204 (0.24                 | N/A<br>)                                           | N/A                                                  | 10 vs. 10 (1                     | ) 0 <i>vs.</i> 0                 | 5 vs. 5 (1)                        | N/A                             | N/A                              | 11 <i>vs</i> . 12<br>(0.57)  | Retrospective<br>propensity-score<br>comparison (single site)      |

MIS, minimally invasive surgery; SSI, surgical site infection; AL, anastomotic leak; IH, incisional hernia; SBO, small bowel obstruction; LOS, length of stay; N/A, data not included/provided in study.

#### Intracorporeal or Extracorporeal Ileocolic Anastomosis After Laparoscopic Right Colectomy

A Double-blinded Randomized Controlled Trial

Marco E. Allaix, MD, PhD,\* Maurizio Degiuli, MD,\* Marco A. Bonino, MD,\* Alberto Arezzo, MD,\* Massimiliano Mistrangelo, MD,\* Roberto Passera, PharmD, PhD,† and Mario Morino, MD\*

Objectives: The aim of the study was to determine whether there are clinically relevant differences in outcomes between laparoscopic right colectomy (LRC) with intracorporeal ileocolic anastomosis (IIA) and LRC with extracorporeal IA (EIA).

Background: IIA and EIA are 2 well-established techniques for restoration of bowel continuity after LRC. There are no high-quality studies demonstrating the superiority of one anastomotic technique over the other.

Methods: This is a double-blinded randomized controlled trial comparing the outcomes of LRC with IIA and LRC with EIA in patients with a benign or malignant right-sided colon neoplasm. Primary endpoint was length of hospital stay (LOS). This trial was registered with ClinicalTrials.gov, number NCT03045107.

**Results:** A total of 140 patients were randomized and analyzed. Median operative time was comparable in IIA versus EIA group {130 [interquartile range (IQR) 105–195] vs 130 (IQR 110–180) min; P = 0.770} and no intraoperative complications occurred. The quicker recovery of bowel function after IIA than EIA [gas: 2 (IQR 2–3) vs 3 (IQR 2–3) days, P = 0.003; stool: 4 (IQR 3–5) vs 4.5 (IQR 3–5) days, P = 0.032] was not reflected in any advantage in the primary endpoint: median LOS was similar in the 2 groups [6 (IQR 5–7) vs 6 (IQR 5–8) days; P = 0.839]. No significant differences were observed in the number of lymph nodes harvested, length of skin incision, 30-day morbidity (17.1% vs 15.7%, P = 0.823), reoperation rate, and readmission rate between the 2 groups.

Conclusions: LRC with IIA is associated with earlier recovery of postoperative bowel function than LRC with EIA; however, it does not reflect into a shorter LOS.

Keywords: anastomosis, extracorporeal, intracorporeal, laparoscopic right colectomy, randomized controlled trial

(Ann Surg 2019;270:762-767)

mesenteric traction, lower risk of ileum mesentery twisting while anastomosis construction, and shorter skin incision for the specimen extraction.<sup>3</sup>

Several retrospective studies have compared outcomes after LRC with IIA or EIA reporting controversial results: some showed earlier return of bowel function, lower morbidity, and shorter length of hospital stay (LOS) after IIA than EIA, whereas others did not find significant differences between the 2 techniques.<sup>4–21</sup> The rate of prolonged postoperative ileus does not seem to be affected by surgical technique.<sup>21,22</sup> The heterogeneity of the studies and the lack of randomization do not allow to clearly define possible clinical advantages of one technique over the other.<sup>22–25</sup>

The aim of this double-blinded randomized controlled trial (RCT) was to determine whether there are clinically relevant differences in outcomes between LRC with IIA and LRC with EIA.

#### METHODS

#### Patient Selection

This is a single-institution double-blind RCT comparing the outcomes in patients undergoing LRC with IIA or EIA between February 2017 and August 2018. All consecutive patients aged 18 years or older with a benign or malignant right-sided colon neoplasm were considered. Exclusion criteria were distant metastases, perioperative evidence of adjacent organs tumor invasion, emergent surgery, and scheduled synchronous intra-abdominal surgery. Patient characteristics, perioperative work-up, intraoperative results, and postoperative outcomes were recorded into a prospective database by an observer who was blinded to treatment. The protocol was approved by the ethical committee of our institution.

### Summary

•Each of the laparoscopic anastomotic techniques discussed has advantages.

• Most advanced laparoscopic surgeons will adopt one of the methods, become proficient in it, and rely on it exclusively.

•A surgeon, like a craftsman, can never have too many tools at his or her disposal, and familiarity with each is essential.

## Laparoscopic Appendectomy

Asst.Prof Faisal Elagili, MD,MS,FASCRS

**Consultant Colorectal and General Surgeon** 



### Indications

•Laparoscopic appendectomy is recommended as the preferred approach over open appendectomy for both uncomplicated and complicated acute appendicitis where laparoscopic equipment and expertise are available

•Conventional three-port laparoscopic appendectomy is recommended over single-incision laparoscopic appendectomy

### Indications

•Laparoscopic appendectomy is suggested over open appendectomy in obese patients, older patients, and patients with high peri- and postoperative risk factors

•Laparoscopic appendectomy should be preferred to open appendectomy in pregnant patients when surgery is indicated and laparoscopic expertise is available

2020 update, the World Society of Emergency Surgery (WSES) published guidelines

### **Technical Considerations**

### •Anatomy

- •Posteromedial aspect about 2.5 cm below the ileocecal valve
- •Retrocecal (65%), Pelvic (31%), ascending, paracecal, and preileal (1%); and ascending, paracecal, and postileal (0.4%)
- •I dentified during surgery by following the convergence of the taeniae coli toward the inferior portion of the cecum
- Appendicular artery
- •The mesoappendix
- •The fold of Treves

## Equipment

- Standard laparoscopic equipment
  - •Trocars
  - •Blunt graspers
  - Hook electrocautery
  - •Laparoscope, 30°, 10 mm
  - •Electrosurgical device (eg, electrocautery wand, Harmonic Scalpel)

•The following equipment, if available, is also helpful

- •Laparoscope, 30°, 5 mm
- Laparoscopic clip applier

## Technique

### Postoperative Care

## Complications

### •Early

- •Surgical-site infection (SSI)
- •Bleeding
- Intra-abdominal abscess
- •Unrecognized enteric injury
- •Fistula formation

### •Late

Incisional hernia

•Stump appendicitis