

Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Scopus

[Back](#)

Evaluating the Binding Interactions between Artemisinin and Kelch 13 Protein Mutants Via Molecular Modelling and Docking Studies

[Journal of Advanced Research in Applied Sciences and Engineering Technology](#) • Article • Open Access • 2022 • DOI: 10.37934/araset.28.3.272286

[Azman, Aisyah Nazura](#)^{a,b}; [Fahmirauf, Safwan Fathi Muhd](#)^a; [Fuad, Fazia Adyani Ahmad](#)^a ; [Hisam, Raden Shamilah Radin](#)^b; [Yusuf, Noor Azian Md.](#)^b

^aDepartment of Chemical Engineering & Sustainability, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, 53100, Malaysia

[Show all information](#)

2 26th percentile

Citations

0.12

FWCI

[Full text](#) [Export](#) [Save to list](#)

Document

Impact

Cited by (2)

References (25)

Similar documents

Abstract

Malaria is a parasitic infection caused by protozoan parasites from the genus *Plasmodium*. Over the years, various concerns have arisen regarding the efficacy in treating malaria caused by *Plasmodium falciparum*, which was reported to be caused by mutations in one of the parasite's proteins, known as

the Kelch 13 (K13). This study aims to generate the model structures of *P.falciparum* K13 protein mutants and to evaluate the binding affinities and interactions between these proteins and artemisinin drug, which is the drug used for the treatment of malaria. To date, the interactions between the protein mutants and artemisinin drug have not been computationally elucidated. In this study, four different types of mutant proteins were analysed, which are V494I, L598G, S600C and N537I and the results were compared with the wild-type K13 protein. Homology models of these proteins were created using the wild-type K13 (PDB ID:4YY8), with high percentage of sequence identity with the mutants. Most models with-2 and 2 have good Rama-Z scores, hence it can be deduced that the four mutants V494I (-1.21 ± 0.42), L598G (-1.19 ± 0.41), S600C (-0.93 ± 0.43), N537I (-1.16 ± 0.43) and the wild-type (-1.34 ± 0.45) have acceptable Rama-Z scores. Molecular docking between artemisinin and the generated models of K13 proteins revealed that all protein mutants have higher binding energy; V494I (-6.79 kcal/mol), L598G (-9.26 kcal/mol), S600C (-6.17 kcal/mol) and N537I (-6.96 kcal/mol), compared to the wild-type (-9.65 kcal/mol). The results showed that all four distinct mutant proteins have less stable complex formation, which indicate that the mutant proteins have higher resistance towards artemisinin due to the higher binding energy compared to the K13 wild-type protein. However, all mutations have a higher number of protein-ligand hydrophobic interactions and protein-ligand hydrogen bonds than the wild-type protein, which requires further analysis to understand the binding interactions. The predicted structural information with regards to binding interactions between the K13 mutant proteins and artemisinin obtained from this study has paved the path toward understanding how mutants may cause parasites' resistance towards artemisinin drugs. © 2022, Penerbit Akademia Baru. All rights reserved.

Author keywords

artemisinin; Malaria; *Plasmodium falciparum* parasites

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
Department of Chemical Engineering & Sustainability		
Kulliyyah of Engineering		

Funding sponsor	Funding number	Acronym
MREC	21-1175-60416	
Canadian Healthcare Engineering Society See opportunities by CHES ↗		CHES
International Islamic University Malaysia See opportunities by IIUM ↗		IIUM
Kementerian Kesihatan Malaysia See opportunities by KKM ↗	NMRR-21-1175-60416	KKM
Kementerian Kesihatan Malaysia See opportunities by KKM ↗		KKM

Funding text 1

The authors would like to thank the Director General of Health Malaysia for his permission to publish this article. The study was supported by the Ministry of Health Malaysia Research Grant (NMRR-21-1175-60416). The funders had no role in the study design, data collection analysis, or preparation of the manuscript. We also thank the Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Institute of National Health, Setia Alam and Department of Chemical Engineering & Sustainability (CHES), Kulliyyah of Engineering, International Islamic University Malaysia for their assistance in performing these studies. This study has been approved by the MREC number 12-1175-60416.

Funding text 2

The authors would like to thank the Director General of Health Malaysia for his permission to publish this article. The study was supported by the Ministry of Health Malaysia Research Grant (NMRR-21-1175-60416). The funders had no role in the study design, data collection analysis, or preparation of the manuscript. We also thank the Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Institute of National Health, Setia Alam and Department of Chemical Engineering & Sustainability (CHES), Kulliyyah of Engineering, International Islamic University Malaysia for their assistance in performing these studies. This study has been approved by the MREC number 21-1175-60416.

Corresponding authors

Corresponding
author

F.A.A. Fuad

Affiliation Department of Chemical Engineering & Sustainability, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), Jalan Gombak, Kuala Lumpur, 53100, Malaysia

Email address fazia_adyani@iium.edu.my

© Copyright 2024 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Funding details

Corresponding authors

About Scopus

[What is Scopus](#)

[Content coverage](#)

[Scopus blog](#)

[Scopus API](#)

[Privacy matters](#)

Language

[日本語版を表示する](#)

[查看简体中文版本](#)

[查看繁體中文版本](#)

[Просмотр версии на русском языке](#)

Customer Service

[Help](#)[Tutorials](#)[Contact us](#)

ELSEVIER[Terms and conditions](#) ↗ [Privacy policy](#) ↗ [Cookies settings](#)

All content on this site: Copyright © 2025 [Elsevier B.V.](#) ↗, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

