

Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

Scopus

[Back](#)

Analogues of Oxamate, Pyruvate, and Lactate as Potential Inhibitors of *Plasmodium knowlesi* Lactate Dehydrogenase Identified Using Virtual Screening and Verified via Inhibition Assays

[Processes](#) • Article • Open Access • 2022 • DOI: 10.3390/pr10112443 [Ahmad Fuad, Fazia Adyani](#)^a ; [Ogu Salim, Nurhainis](#)^b^a Department of Chemical Engineering & Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor, 53100, Malaysia[Show all information](#)

5 43th percentile

Citations

0.37

FWCI

[View PDF](#)[Full text](#) [Export](#) [Save to list](#)[Document](#)[Impact](#)[Cited by \(5\)](#)[References \(23\)](#)[Similar documents](#)

Abstract

Malaria management remains a challenge, due to the resistance of malaria parasites to current antimalarial agents. This resistance consequently delays the global elimination of malaria throughout the world. Hence, the demand is increasing for new and effective antimalarial drugs. The identification of potential drugs that target Pk-LDH can be obtained through virtual screening analyses, as this has been previously applied to discover Pf-LDH inhibitors. In this study, the selected candidates from our virtual screening analyses were subsequently tested against purified Pk-LDH, and verified through an inhibition of Pk-LDH via enzymatic activity assays. Virtual screening analysis from this study showed that 3,3-Difluoropyrrolidine hydrochloride and 3-hydroxytetrahydrofuran exhibited binding affinity values of -3.25 kcal/mol and -3.74 , respectively. These compounds were selected for evaluation towards inhibitory activity against Pk-LDH assays, including two compounds from a previous study which are oxalic acid and glycolamide. The earlier compounds were structurally similar to lactate and pyruvate, and the latter two compounds were structurally similar to a known LDH inhibitor, oxamate. Among all of the compounds tested, oxalic acid showed the highest inhibition activity at 54.12%; interestingly, this correlated well with the virtual screening analyses, which showed that this compound was the best among the oxamate analogues, with a binding affinity value of -2.59 kcal/mol. Hence, further exploration and development of this compound may result in a promising antimalarial drug for malaria treatment, especially for infection involving *P. knowlesi*. © 2022 by the authors.

Author keywords

inhibition assay; lactate dehydrogenase; malaria; *Plasmodium knowlesi*; virtual screening

Indexed keywords

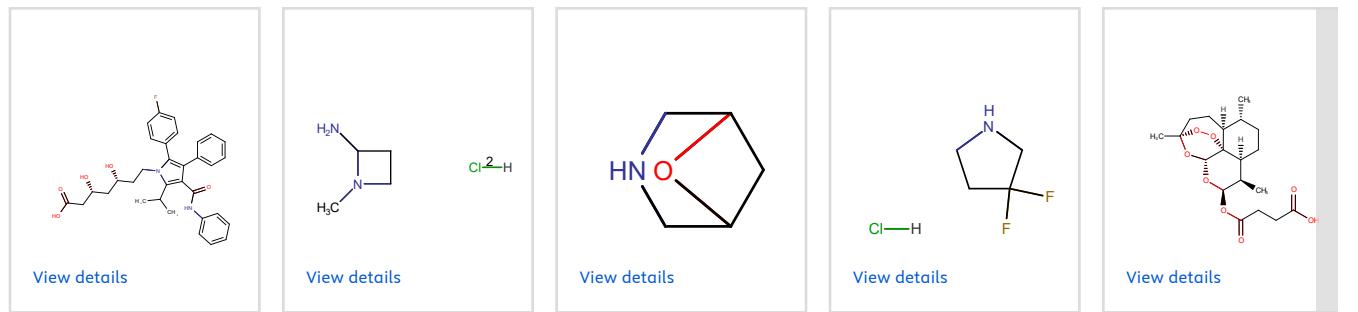
Engineering controlled terms

Binding energy; Diseases

Engineering uncontrolled terms

Antimalarial drug; Binding affinities; Inhibition assays; Lactate dehydrogenase; Malaria; Oxamate; Plasmodium knowlesi; Pyruvates; Screening analysis; Virtual Screening

Engineering main heading


Oxalic acid

Reaxys Chemistry database information

Reaxys is designed to support chemistry researchers at every stage with the ability to investigate chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data.

Substances

[View all substances \(19\)](#)

Powered by

Funding details

Details about financial support for research, including funding sources and grant numbers as provided in academic publications.

Funding sponsor	Funding number	Acronym
International Islamic University	RIGS15-141-0141	

Funding text

We thank the Director-General of Health Malaysia, the Ministry of Health, Malaysia, and the Director, Institute for Medical Research (IMR), for permission to publish this article. We also would like to thank the Parasitology Unit, Institute for Medical Research, Kuala Lumpur, Malaysia, for giving us an opportunity to perform our experiments in their facilities. We are also indebted to the colleagues at the Malaysian Genome Institute, Selangor, Malaysia, for their assistance in protein preparation. This study was supported by the International Islamic University Malaysia Research Initiative Grants (RIGS15-141-0141).

Corresponding authors

Corresponding author	F.A. Ahmad Fuad
----------------------	-----------------

Affiliation	Department of Chemical Engineering & Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor, 53100, Malaysia
-------------	---

Email address	fazia_adyani@iium.edu.my
---------------	--------------------------

© Copyright 2024 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Indexed keywords