
Brought to you by INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

 $Q \equiv$

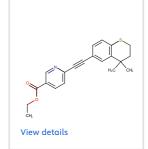
Back

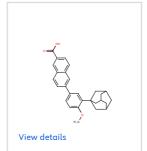
Advancement of All-Trans Retinoic Acid Delivery Systems in Dermatological Application

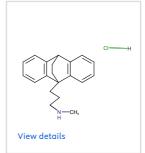
Abstract

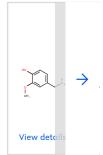
Dermatological conditions, such as acne, photoaging, psoriasis, and wounds, have been treated topically with all-trans retinoic acid (ATRA) for many years owing to its anti-inflammatory activity, comedolytic effect, and ability to increase collagen production. However, common side effects of ATRA known as the retinoid reaction can occur. These side effects are countered by ATRA encapsulation in solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLCs), and liposomes. Liposomes used to encapsulate ATRA include niosomes, ethosomes, and transfersomes. Side effects involving inflammatory reactions, such as irritation, redness, and erythema, were diminished using these approaches. The use of such carriers enhanced the efficacy of ATRA by enhancing its permeation into skin. These formulations have been compared in terms of improving the activity of ATRA and the ability to relieve the side effects. Further research into different delivery systems for ATRA using various formulations will improve the future of topical ATRA delivery. © 2022 by the authors.

Author keywords


liposomes; NLC; retinoids; retinol; SLN; tretinoin


Reaxys Chemistry database information


Reaxys is designed to support chemistry researchers at every stage with the ability to investigated chemistry related research topics in peer-reviewed literature, patents and substance databases. Reaxys retrieves substances, substance properties, reaction and synthesis data.


Substances View all substances (13)

Powered by Reaxys

Corresponding authors

Corresponding H. Hadi author

Affiliation

Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Pahang, Kuantan, 25200, Malaysia

Email address hazrina@iium.edu.my

© Copyright 2022 Elsevier B.V., All rights reserved.

Abstract

Author keywords

Reaxys Chemistry database information

Corresponding authors

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API