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ABSTRACT

Diatom is a dominant phytoplankton and commonly found in oceans or waterways. The
captured phytoplankton microscopic images suffer from low contrast and surrounding
debris. These images are not appropriated for identification. Integrated dual image contrast
adaptive histogram specification with enhanced background removal (DIHS-BR) is proposed
to address these issues by automatically removes the background of the phytoplankton
image and improves the image quality while cropping phytoplankton cell. DIHS-BR will
automatically remove the background and noises. DIHS-BR consists of two major steps,
namely, contrast adaptive histogram specification and background removal by means of
edge mask cropping. Results demonstrated that DIHS-BR filtered out the image background
and left only the required phytoplankton cell image. Noises are minimized, while the
contrast and colour of phytoplankton cells are improved. The average edge-based contrast
measure (EBCM) of 83.065 demonstrates the best contrast improvement of the proposed
methods compared with the other state-of-the-art methods.
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Introduction

Diatoms are unicellular microscopic phytoplanktonic
organisms that can be found practically in any moist
environment (freshwater and saltwater) [1]. Several
studies [1-3] have found that a diatom is an important
component in the food chain of aquatic ecosystems
because it provides food for marine life, such as zoo-
plankton, fish, and shellfish. A diatom ranges in sizes
from a few microns to millimetres and could take on
thousands of different shapes, such as spheres,
ellipses, triangles, and stars. Most of diatom algae
could only be observed through microscopes [1, 41.
Digital microscopic image enhancement is a critical
issue when dealing with changing lighting conditions
[5]. The superiority of digital microscopic images is
dependent on a variety of environmental factors,
such as relative movement, colour alteration, and
uneven lighting conditions. The digital microscopic
images of diatom are frequently captured with noise
and suffers from low contrast, mixed with floating
small objects, or unwanted particles. In addition, the
captured images contain many debris especially near
the target cells or research subject [6]. In some cases,
depending on the magnificent scale, the captured
images are blurred as a result of improper focus
during the image acquisition process [7]. Examining a
fresh phytoplankton under a digital microscope is

difficult, especially when motile microalgae cells are
involved [8].

To address these problems, image enhancement is
an important preprocessing step before identification
and classification of phytoplankton. This step provides
an additional attempt to improve the overall image
quality or highlights interested properties and charac-
teristics of a related subject matter. These improve-
ment processes can help in strengthening the next
image identification process and fulfilling the require-
ment for a particular analysis [9]. The image enhance-
ment step is required to provide clear image details
and improves the overall appearance of the phyto-
plankton images.

In this work, DIHS-BR consists of two major stages
specifically designed to increase the overall quality of
an image and retrieves the diatom cell in an output
image. In the first stage, the modified dual-image his-
togram stretching with contrast adaptive histogram
specification is implemented to enhance the image
quality. The three major components involved in the
first step are global contrast modification, local con-
trast improvement, and colour correction, which are
used for image enhancement. In the second stage,
the processed image is implemented with a back-
ground removal technique in which the edge mask
crop technique is applied. In the edge mask crop
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step, the background region is removed from the
overall image to retrieve only the diatom image cell.
Accordingly, diatom cell edges and details are signifi-
cantly highlighted, and the visibility of the cell struc-
ture is incredibly increased. Thus, the proposed DIHS-
BR method has the main contributions as follows:

i Extracting the complete phytoplankton cell from
the background areas while retaining the high
contrast and colour of the final output image cell.

ii Minimize the noises and enhancing the edge
detail texture of the phytoplankton cell in the
final output images.

The rest of this manuscript is ordered as follows:
Section 2 describes the related works of the research.
Section 3 focuses on the detailed methodology of the
proposed DIHS-BR method. Next, the results and discus-
sions that prove the effectiveness and robustness of the
proposed method are presented in Section 4. Lastly,
Section 5 concludes the proposed work.

Related works

The low contrast microscopic image enhancement
algorithm based on a multi-technology fusion
method is proposed by Chen et al. [10]. The high and
low frequency components of the image are separated
to avoid excessive noise while strengthening the
images. Furthermore, a low contrast microscopic
image improvement was achieved by integrating the
Sobel and Laplacian of Gaussian (LoG) operators inte-
grated with contrast limited adaptive histogram equal-
ization method.

Ooi et al. [11] proposed toboggan contrast enhance-
ment (TCE) to enhance of the microscopic colour
images. This method enhances the contrast of the
microscopic images and reduces the noise level. Gaus-
sian filter is implemented to reduce the image’s noise
level. However, this filter produces more blurred
edges of objects in the image. Toboggan contrast
enhancement is used to restore the objects’ edges.

Abdul Ghani and Mat Isa [12] introduced a method
called dual-image Rayleigh-stretched contrast-limited
adaptive histogram specification (DIRS-CLAHS) to
improve the underwater image quality by combining
global and local contrast stretching based on RGB
and HSV colour spaces. Contrast correction mechanism
is applied to produce dual-intensity images, which are
then combined to generate an enhanced output
image. Subsequently, local contrast enhancement is
applied to boost the contrast in this image. Next, the
colour correction method, which modifies the exces-
sive brightness of an output image, is applied by
means of HSV colour model. The proposed method is
applied to an underwater image, which suffers from
the blue-green colour cast. Based on the sampling,

the proposed method does not significantly eliminate
the noise level and floating particles that exist in most
phytoplankton images.

Serdar Cakir et al. [13] proposed a method called
contrast enhancement of microscopic images using
image phase information, which was inspired by the
revolutionary design of phase contrast microscopy
(PCM). The image enhancement framework in the pro-
posed method transforms changes in the image phase
into magnitude variations to improve the image struc-
tural details and visibility. The proposed method pro-
duces better output images compared with several
adaptive histogram equalization-based techniques,
but it insignificantly improves dark areas in images
because the image details are low.

Abdul Ghani [14] combined a modified Recursive-
overlapped Contrast Limited Adaptive Histogram Spe-
cification with Dual-image Wavelet Fusion (ROCLAHS
+DIWF) to improve contrast underwater images.
First, homomorphic filtering was applied to the
image to increase the image’s colour homogeneity.
Second, RO-CLAHS was applied to the image to
enhance the edge information before the DIWF
method to produce a better natural-looking image.
According to the author, this technique achieved the
highest entropy value, EME by entropy, and average
gradient compared with the state-of-the-art methods.

In 2019, Sonali et al. [15] proposed a method for
denoising and enhanced the RGB retinal images
using Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE). This method employs the CLAHE tech-
nique and filters to remove noise and improve the
overall digital image contrast, particularly medical
images. The CLAHE technique improves the contrast
and eliminates artifacts generated by mapping two
adjacent grey-scale values to different values [16].
The method improves the overall image to a certain
extent. However, the output images tend to have
under-enhanced areas in some cases.

Azmi et al. [17] proposed an integrated method
called nature-based underwater image with colour
enhancement mechanism through fusion of a swarm-
intelligence algorithm (NUCE) to improve underwater
images with colour distortion neutralization. The
method combines both dual image fusion method
and swarm-intelligence based means equalization tech-
niques. The result showed that the method is effective
in removing the bluish colour cast in the RGB image
to a certain level, but inefficient for images with a rela-
tively high blue green colour cast.

Jackson et al. [18] presented a rapid dehazing tech-
nique based on dark channel prior and Rayleigh scat-
tering (DCP-RS). The minimum and maximum pixels
in each of the three RGB channels of hazy image
were determined using the image dehazing approach.
Then, Rayleigh scattering theory is used to determine
the initial transmission map by modelling a scattering
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Figure 1. Examples of the microalgae images by Ooi et al. [11] and Borges et al. [4]. (a) low contrast, low brightness, blur, and
noise algae image; (b) image with noise, artefacts, and small foreign floating objects; and (c) mucilage in the bottom corner of an

elongated single algae image.

coefficient. The image is then refined using a fast-
guided filter to correct the erroneous halo edges
before being restored using the atmospheric scatter-
ing model. The overall output images are improved
in terms of haze level. However, a degree of haze
element can still be observed in some cases of the
output images, especially deteriorated images with a
high haze percentage. Figure 1 shows a few original
blurred microscopic images with noises and foreign
floating objects in the background.

As previously mentioned, most of the captured phy-
toplankton images suffer from various problems, such
as low contrast, deteriorated background colour, low
visibility, and high level of noises. These images are
hardly processed and unsuitable for the further
enhancement and analysis processes, especially for
the detection and classification. Foreign floating sub-
stances and noises contained in an image might be
falsely interpreted as the phytoplankton. This situation
leads to wrong detection and classification of the phy-
toplankton. The following images show the common
captured phytoplankton images using a normal micro-
scopic image acquisition device. In the sample images
in Figure 2, the captured phytoplankton image cells
have diverse backgrounds and contrast, which affect
their visibility and identification. Some of the phyto-
plankton are captured in dark background areas with

(b) Cocconeis

(a) Hemiaulus

Figure 2. Sample of various phytoplankton images.

low contrast (Figure 2(a)) in which the cells are
hardly seen and differentiated from the background.
In certain cases, the captured images are blur
(Figures 2b and d), and some are captured in a high
level of noise in which the cell edges are hardly differ-
entiated (e.g. Figure 2c). These problems lead to
unsuccessful or low rate of detection and classification
processes of phytoplankton.

Manigandan and Vaithiyanathan [19] proposed
underwater image enhancement with colour con-
stancy and dehazing based on depth estimation. The
method improves the overall image visibility because
the objects in the image are better differentiated.
However, excessive colour distortion occurs in certain
areas, especially when the original image is dark. Liu
et al. [20] combined the physical model and generative
adversarial network for the improvement of under-
water images. Fard et al [21] introduced a novel strat-
egy in histogram of oriented gradients, which can
calculate dips in different directions. These conducted
experiments show an adequate enhancement of the
contrast and colour of the output images. Neverthe-
less, the processed images produce haze, resulting in
limited visibility, because the captured objects in the
image are distanced from the camera.

One of the interesting techniques for image dehaz-
ing and colour correction is the integration with the

(¢) Rhizosolenia

(d) Cyclotella
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neural network approach. Li et al. [22] introduced a
deep convolutional neural network (CNN) for single
image dehazing called a perception-inspired single
image dehazing network with refinement (PDR-Net).
Yang et al. [23] proposed a method called the Region
Detection Network model, which reflects the regional
detection of a single blurry image. The findings
reveal that the neural network outperforms conven-
tional methods in estimating ambient light and trans-
mission. Nevertheless, the CNN method'’s disadvantage
is that it requires a large image dataset to process and
achieves a successful output [24].

Methodology

In this study, the phytoplankton are collected from
various sources, including from the coastal waters of
Pahang [25] and the University of California Santa
Cruz phytoplankton database [26]. The collected
samples are observed under digital microscope
Nikon DS-Ri1, and the images are taken at a total mag-
nification of 400x and 200x assisted with Nikon
Element Imaging Software. Approximately 100 phyto-
plankton sample images with an original resolution
of 1280 x 1024 pixels were captured for this study.

The experimental work has been conducted using
MATLAB R2021a installed on a Microsoft Windows 10
operated computer with Intel Core i5, 2.90 GHz, 8 GB
RAM. According to the experiment, the average total
time taken to run the whole algorithm for a single
image with a size of 1280 x 1024 pixels is around 2
s. The experimental results show that the proposed
algorithm is suitable for practical uses because the
resultant images are of good quality, and the phyto-
plankton cells are highly visible and separated from
the background.

Introduction

The captured phytoplankton images have a high noise
level and contain foreign floating particles. These pro-
blems could be solved by means of background
removal, which is included in the proposed DIHS-BR
method. Background removal by edge mask cropping
is designed and integrated in the proposed DIHS-BR
method to improve the image quality by reducing the
noise level and eliminating the floating particles that
impede phytoplankton cell detection. The final output
image of this proposed method will have only the par-
ticular diatom cell shown in Figure 3 and the final
output images of the proposed method in Section 4.
The proposed DIHS-BR method algorithm s
designed with two main processes. The first step,
namely, contrast adaptive histogram specification, is
implemented to enhance the overall input image con-
trast and results in significant quality improvement.
Meanwhile, the second step, namely, background

removal technique, refers to the extraction of the phyto-
plankton cell from the background image by edge-mask
cropping. From the first step, the applied enhancement
process yields additional affects because it has signifi-
cantly reduced the noise and produces homogeneous
illumination around the phytoplankton cell. Conse-
quently, a better platform for the cell extraction and
background removal could be provided for the next
process. Nevertheless, in the proposed DIHS-BR
method, only the required phytoplankton cell image
appears in the final output image for the cell identifi-
cation. In addition, the colour correction technique
has been included in the proposed method to boost
the colour of the phytoplankton algae.

In comparison with previous studies [10-20], some
methods do not significantly reduce the noise from
the raw input image and results in interference
between the noise and the phytoplankton cell in the
final output image. Consequently, the phytoplankton
cell could not be significantly identified. In addition,
certain previous methods do not integrate the pre-pro-
cessing step and focus on the basic individual
process, such as contract enhancement, denoising, or
dehazing.

Figure 3 illustrates the proposed methodology of
the DIHS-BR method. Brief descriptions of the applied
steps are as follows:

Step 1: The original input image is applied with the
modified dual image contrast adaptive histogram
specification technique to improve the overall
image quality.

Step 2: Implementation of the improved haze removal
technique to remove the apparent noises and
haze in the image.

Step 3: Integrated image brightening and edge
masking to highlight the edge of the diatom cell
with improved background removal approach of
diatom cell.

Step 4: Unsupervised image contrast enhancement.

Dual image contrast adaptive histogram
specification for the overall image
enhancement

Image enhancement, which is set up as a pre-proces-
sing phase, is an important step before the edge
mask cropping. This step provides the image with a
fine contrast by increasing the visibility of the
region of interest. In this step, the input image histo-
gram is divided into two regions based on the
average intensity value. Both histogram regions are
stretched to the whole 255 dynamic ranges of the
8 bit image, producing two different intensity
images, namely, over-enhanced and under-enhanced
images.
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Figure 3. lllustration of the proposed DIHS-BR method.

The average intensity value of an image with n
number of pixels, x at the position of (i, j), could be cal-
culated by using Equation (1).

> Xi

n

M

laverage =

The stretching process is applied as per Equation

().

Pout = (Pin + imm)(i".’”‘” * ‘.”"’”) +omn (2
Imax + Imin
where Pin and Pout are the input and output pixels,
respectively. The minimum and maximum intensity
values of the input and output images are denoted
as imins fmids Omins @Nd Omax-

The obtained over- and under-enhanced images are
then applied with contrast adaptive histogram specifica-
tion in which the histogram distribution is specified to
follow the Rayleigh distribution map wherein the con-
centration of the image pixels is at the middle areas of
the histogram. The image is then converted from red-
green-blue (RGB) into an HSV colour model for the
colour correction. The saturation (S) and value (V) com-
ponents of the colour model are stretched to increase
the colour dynamic range of the output image before
it is converted back into an RGB colour model. The fol-
lowing figure simplifies the step applied in the contrast
adaptive histogram specification Figure 4.

The mapping of the intensity distribution follows
the Rayleigh distribution, which is a bell-shaped
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intensity distribution in which the image pixels con-
centrate more in the middle range of the intensity
values. The probability distribution function (PDF)
and cumulative distribution function (CDF) of the Ray-
leigh distribution are represented in Equations (3) and
(4), respectively. x is the input pixel, and a is the Ray-
leigh distribution parameter.

X —. (0%
PDFsoyign = (=3¢t 3)

CDFrayteign = 1— /%) 4)

Furthermore, colour correction is the last step in
implementing the contrast adaptive histogram specifi-
cation. The image is first converted into an HSV colour
model before the channels are decomposed. The most
influenced channels of saturation (S) and value (V) are
stretched to the entire dynamic range of the colour
model to widen its capability in distributing the
image pixel throughout the image dynamic range of
a particular colour model.

In this case, the midpoint jiq of the S and V com-
ponents are calculated using Equation (5), whereas
imin @nd imax represent the minimum and maximum
intensity values of the S and V components, respect-
ively.

g = <’min ‘|2' ’max) )

The histograms of S and V are then stretched
depending on their midpoints. The histogram
outputs should follow Equation (6) of the Rayleigh-
stretched histogram.

inOmax — FinOmin — IminOmax — OminImax

P
Rayl. — stretched =

. N )

az(’max — imin)
. . 2

[PinOmax — PinOmin — iminOmax — Ominimax]

-exp ; T
20(imax — imin)

(6)

The obtained average pixels values of the stretched
histograms, I,,q, is applied to integrate the lower-
stretched and upper-stretched histograms of the S
and V components, as shown in Equation (7). Iis (i, j)
and lys (i, j) are the intensity values for the lower-
stretched and upper-stretched histograms at pixel’s

Improved contrast
adaptive histogram
specification

v

Stretching both elements
of Saturation and Value
of HSV color model

Division into upper and N

Input ima, ; L
2 ge lower intensity images

Conversion into RGB
==

Ratput image color model

Figure 4. lllustration of the steps involved in the applied
improved contrast adaptive histogram specification.

positions (i, j), respectively.

lovg = (lLS(i: J); -iz- lys(i, f)) )

In the final step, the H, S, and V components are com-
posed to generate an image in the HSV colour model,
which is then converted into the RGB colour model.
Accordingly, an improved output image is produced,
as shown in Figure 5(b). In the aforementioned figure,
the phytoplankton algae cell is more visible, and the
overall image has better contrast and colour with homo-
geneous illumination. In addition, 3D RGB representation
shows a wide distribution of the intensity pixels of the
image after implementing such a process. The output
image in this step is further processed for smoothing
based on the background removal technique.

Enhanced background removal

In the experiment, the low-light output image pro-
duced from the previous step contains noises and
floating particles. These noises and floating particles
might be mixed with micro-size phytoplankton itself.
Consequently, the detection and identification pro-
cesses cannot be run, or the successful rate in the phy-
toplankton detection might be low. To address this
problem, the background removal technique is inte-
grated in the main process, whereas the haze
removal and edge masking steps are applied.

Improved haze removal technique

Edge detection of a phytoplankton image is the most
important process in the pre-processing of the back-
ground removal step. Determining the edge or
border of a phytoplankton results in a higher success-
ful identification rate of its features. Furthermore, the
characteristics may be correctly identified. Conse-
quently, the type and family group of phytoplankton
would be easier to be classified.

The proposed DIHS-BR method is designed to
address this objective. The output image from the pre-
vious step is first inverted into a negative image and
boosted with the enhancement process through the
haze removal technique before the image is brigh-
tened to smoothen the background areas. The image
is then edge mask cropped to reveal the image back-
ground. Subsequently, the output image is reinverted
to a positive image. Thus, only the phytoplankton cell
image is left.

The enhanced haze removal technique for a low-
light image consists of three major steps. The image
is first inverted into a negative image based on Dong
et al. [27] to observe how lowlight areas in the contrast
adaptive histogram specification image appear hazy,
as described in Equation (8).

R(x) = 255 — I(x) 8)
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(b) Improved contrast adaptive histogram specification

Figure 5. (a) Original image with 3D RGB colour representation; (b) output image after the implementation of the improved con-
trast adaptive histogram specification with 3D RGB colour representation.

where [ (x) is the intensity of a colour channel of pixel x
for a particular low-light input image /, R° (x) refers to
the inverted intensity image R, and c indicates the
colour channel, which refers to the RGB in this case.
Figure 6(b) shows a sample of an inverted low-light
image after it has been inverted. Next, the inverted
image is dehazed by applying the dehazing algorithm,
as described by Equation (9) [28].

R(x) = J(x) x t(x) + A(1 — t(x)) 9)
where A denotes the total amount of light emitted by
the atmosphere on a global scale, R(x) denotes the
brightness of the pixel x captured by the microscope
camera, J(x) is the original object’s or scene’s intensity,
and t(x) indicates the percentage of light emitted by
objects that is captured by the microscope camera.
According to this equation, the haze removal

algorithm highly relies on the estimation of A and t
(x) of the captured image with intensity I(x) to
recover J(x) from I(x). The result is shown in Figure 5(c).

The inversion operation described in Equation (8) is
repeated to create an enhanced output image. Accord-
ingly, an improved output image is created after inver-
sion to negative image and dehazing algorithm, as
shown in Figure 6(d).

Integrated image brightening and edge masking

Next, the integrated brightening process and edge
masking of the image is conducted to increase the visi-
bility of the diatom edges while eliminating small
unwanted particles. The image brightening process is
based on the mean value of all image intensity
values in the array. Figure 7 shows a sample of the
image after the implementation of image brightening.
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Figure 6. (a) Contrast adaptive histogram specification; (b) inverted image; (c) dehazing algorithm; and (d) output image after the

re-inversion algorithm.

The output image from the previous step is applied
with automatic marking of the region of interest (ROI).
In this case, the ROI refers to the phytoplankton cell.
The edge of the ROI will be identified and highlighted
before the phytoplankton is cropped, and the back-
ground of the image (aside from the cropped phyto-
plankton cell) will be converted into a white area
(replaced with the highest intensity value of 255) in
which the background will be seen as white. This
white background areas are prepared for the next
identification process.

250

200 -

Blue

150

100
250

The background removal method begins with the
implementation of the morphological operators to
reduce or eliminate dark details, resulting in a bright
output image; the image’s bright details are toned
down during the erosion operation [29]. The main
purpose of morphological process is to highlight the
ROI of the image and separate it from the background
region. Binary dilation could be represented by
Equation (10).

ADE=1{E, N # & (10)

Scatterplot: RGB values corresponding to real values

Green

Figure 7. Diatom image after the implementation of image brightening.



where £ refers to the structural element of the E reflec-
tion. Specifically, it is the collection of pixel positions z
in which the reflected structuring element overlaps
with the foreground pixels in A when translated to z
[301].

A © E is defined by Equation (11) for the binary
erosion of A by E.

ACE = {Z|E, C A} (1)

where z is the set of pixel locations where the structur-
ing element translated to location overlaps only with
the foreground pixels in A.

A flat morphological structuring element is required
for the morphological dilation and erosion operations
[31]. This element creates a structuring element type,
which is specified by a particular shape to highlight
the ROl and object edges. The shape used in the
function refers to the disk. Meanwhile, a positive R par-
ameter, which specifies the radius, creates a flat, disk-
shaped structuring element in the applied image.
The analysis of the diatom image shows that the
optimal value of R is one, which refers to the minimal
parameter value. Figure 8 illustrates the analysis
sample result of dilation and erosion functions to deter-
mine the best R value. According to the analysis, the
foreign particles are totally unmarked when the
radius R is equal to one.

The previous output image is further improved in
terms of edge masking to increase the sharpness of
the marked edges. This result could be observed in
Figure 9. The produced uneven edge mask is
smoothed by eliminating all linked components from
the red colour of the highlighted edge mask within a
specific range. Consequently, another binary image
with smooth highlighted ROI edges of the phytoplank-
ton diatom cell that fulfil the criteria is produced, as
shown in Figure 9(b).

Next, the mask cropping process is applied in the
background removal step to crop and remove the
background regions. Consequently, only the ROI for
the diatom cell remains in the final output image.
The cropping process extracts all connected com-
ponents from a binary image highlighted in red
colour and return a binary image containing the only
diatom cell (ROI). Figure 10(a) presents samples of
the phytoplankton image highlighting process.
Figure 10(b) shows the phytoplankton images of the
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diatom after the mask cropping process, in which the
only diatom cell image is produced.

In several cases, when more than one cell of phyto-
plankton is in a single image, the background removal
method will extract both or all of them as long as the
cells are connected or side by side, as shown in Figures
11(a) and (b). Furthermore, the designed background
removal method also could extract phytoplankton
from the background, although the cell shape is
not complete or only half complete, as shown in
Figure 11(c).

In the final step, an improved contrast modification
is applied by adjusting the image contrast. This step
adjusts the image’s contrast by considering that 1%
of the dynamic range values are saturated at low and
high intensities of the diatom cell image. This step
improves the overall image contrast, as shown in
Figures 12-16.

Results and discussions

Five out of 100 diatom images are chosen to verify
and prove the effectiveness and the reliability of
the proposed DIHS-BR method in enhancing the phy-
toplankton image and removing the unwanted back-
ground, especially in preparing the only diatom
image for the detection and classification process,
as shown in Figures 12-16. Qualitative and quantitat-
ive evaluations are conducted to ensure that the
proposed method can preserve the shape and
details of the phytoplankton compared with the
other methods. In terms of image processing, visual
observation (qualitative evaluation) emphasizes the
overall image quality. In this work, quantitative
measurement should support qualitative impressions.
However, since the main purpose of this research
work is to extract the phytoplankton cell while
removing the background and other foreign par-
ticles, the proposed method is apparently reducing
the quantitative image details (measured through
entropy and universal image quality index (UIQI)) as
the image background except the phytoplankton
cell are removed. Meanwhile, the mean squared
error (MSE) will increase, and the peak signal-to-
noise ratio (PSNR) will decrease because the
extracted output image is different from the input
image due to the removal of the output image’s

Value

of R 10 5 3 2 1
& )
Image ~ - ~ e
ouput 5 A5 e ""'*’i»
result - ) V @ "
\ \

Figure 8. Resultant images of dilation that are applied after the erosion with different values of R.
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(a) Original rough edge mask

(b) Smooth edge mask after applying crop masking technique

Figure 9. Comparison of the edge masks before and after applying the crop masking technique.

background. Nevertheless, the quantitative evalu-
ations are conducted in this work are for the
purpose of comparison with other related methods.
The primary comparative measurement to prove
the effectiveness of the proposed DIHS-BR method
is still the qualitative evaluations.

The proposed DIHS-BR method is to enhance and
extract the phytoplankton from the background. All
of the reference papers within these areas focus on
individual work such as enhancement of underwater
images, enhancement of microscopic images, and
some papers are related to noise removal and dehaz-
ing images. Most of the methods compared with the
proposed DIHS-BR method use contrast and smooth-
ing the image at the same time in comparison to the
resultant image, but our method has extra steps that
are background removal technique in which the
edge mask crop technique is applied, in which the
other methods does not have.

Qualitative evaluation

The dark images of Hemiaulus, Leptocylindrus, and Tha-
lassionema suffer from low intensity because the phy-
toplankton cells are hardly seen and differentiated
from the background (Figure 12 15 and 16). In
addition, foreign floating elements can be observed
in the original images, casting shadows on the main
phytoplankton cells. The images of interested phyto-
plankton cells are successfully enhanced and become
more visible when the first major step of enhanced
contrast adaptive histogram specification is applied.
After the masked-cropping background removal, the
phytoplankton successfully separated from the back-
ground to produce a single phytoplankton cell in the
output image. The proposed method has increased
the visibility inside the phytoplankton cell and signifi-
cantly visualizes the phytoplankton shape. The colour
of the extracted cell is significantly improved.

20 um

(a)‘ Highlighted input image with background (mask cropping)

(b) Extracted output image of the phytoplankton cell after the background removal process

Figure 10. (a) Highlighted input image with edge mask crop; (b) output image after edge cropping.
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Original Image

Mask Cropping

Output Image

‘s

(¢) Chaetoceros distans

Figure 11. Image of multiple phytoplankton for the background removal.

Similar effects could be observed in the bright
images of Stephanodiscus and Cyclotella, as shown in
Figures 13 and 14. The proposed method has success-
fully improved the overall image contrast and colour
because the images of the phytoplankton cells
become highly visible. In addition, the shape of the
phytoplankton cells is retained and improved

compared with the original images. A sharp edge
could be observed in the final output image, which
might increase the degree of detection and classifi-
cation rate.

In the second experiment, the proposed DIHS-BR
method is applied on different scales of phytoplank-
ton. The results show that the DIHS-BR method has

Original image

Enhanced contrast adaptive
histogram specification

Final output of the proposed
DIHS-BR method

Figure 12. Image of phytoplankton Hemiaulus.
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Figure 13. Image of phytoplankton Stephanodiscus.

Figure 15. Image of phytoplankton Leptocylindrus.

Figure 16. Image of phytoplankton Thalassionema.

successfully extracted the phytoplankton cells and
eliminated the background while enhancing the
image, although the range occupied by phytoplankton
in the image is small, as shown in Figure 17.

Quantitative evaluation: objective performance
evaluation

In addition to the qualitative evaluation, quantitative
performance evaluations are used to compare the
output images between state-of-the-art methods. In

this work, the output images are evaluated in terms
of entropy, MSE, PSNR, absolute mean brightness
error (AMBE), edge-based contrast measure (EBCM),
and UIQl. Among these quantitative evaluations,
ECBM might be the best quantitative evaluation that
represents the quality improvement of the proposed
method. Nevertheless, the human visual system
(HVS) provides the best evaluation of the effectiveness
of the proposed DIHS-BR method.

Entropy characterizes the image information or
image details, and a higher value of entropy represents
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Original image
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Figure 17. Image of different scales of phytoplankton for the background removal.

a better image quality. Entropy, H(X), of the phyto-
plankton images is obtained using the following
formula:

k
HX) = — ) pix)log>p(x) (12)
x=1

where p(x) specifies the probability distribution func-
tion of the image at state x (pixel), while k denotes
to the number of grey level [32].

MSE is the average of the square of the difference
between the enhanced image, (r'(ij), g"(ij), b" (ij)
and the original image (r(ij), g(ij), b(ij). The lower
the MSE, the closer the enhanced image is to the

original [33].
: Af N [ (i, j) = rG, j))22+
MSE = — (g, j) — gli, )+ (13)
MN=5 5= b0, j) — bli, j)?

PSNR, which is measured in decibels (dB), is used to
measure the quality of the reconstructed image. In the
PSNR analysis, the greater the PSNR value, the better
the reconstructed image. The formula for calculating
the PSNR value is as follows:

B _
PSNR = 20Log1ou (14)

v MSE

where B represents the bits per sample.
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AMBE refers to the difference between the mean
intensity levels of the enhanced and the original
images, and it is mainly used to assess the preservation
of brightness in processed images following contrast
augmentation [34]. AMBE can be defined as follows:

AMBE = |I(y) — I(x)| (15)

where /(y) is the mean intensity level of the enhanced
image, and /(x) is the mean intensity level of the orig-
inal image. A low AMBE value indicates better preser-
vation of the method.

UlQl [35] is defined as a comprehensive reference
image quality measurement that evaluates the
overall quality as the combination of contrast distor-
tion, luminance distortion, and loss of correlation
through Equation (16).

ulQl = Oxy 2/~Lx:u“y 20x0y

. . (16)
o0y W+ 7+ 0

where y, and u,, are the mean values of images x and y,
respectively; and o,, and o, denote the standard devi-
ations of images x and y, respectively. These com-
ponents are multiplicatively combined to generate a
final quality score. UIQI takes values in the interval of
[-1, 1]. The higher values of the measurement indi-
cates better image enhancement.

Meanwhile, EBCM is based on the observation that
the human perception mechanisms are susceptible
to contours or edges [36]. The formula for calculating

the EBCM value is given by Equation (17).

M
EBCM| f(x, )| =

—_

> Cxy) (17)

x=1 y=1

=2

where C(x,y) is the edge value at pixel (x,y).

Table 1 shows the dataset of the quantitative evalu-
ation of the proposed method and several state-of-the-
art methods for the images in Figures 18-20 in terms of
entropy, MSE, PSNR, AMBE, UIQI, and EBCM. All of the
quantitative analysis in Table 1, except EBCM, shows
that the proposed DIHS-BR method does not fulfil the
performance measures because the final output of the
image contains only the diatom algae cells that are
different from the original image. The proposed DIHS-
BR is expected to eliminate all noises and background
areas while extracting the only phytoplankton cell.
Removing all unwanted background results in a larger
difference between the output and the original
images, as most quantitative measurement does.

For instance, the RO-CLAHS + DIWF method yields
the highest value of MSE, PSNR, and AMBE, indicating
that the image enhancement process has successfully
increased the contrast and brightness of the image
(Figures 18 and 20). However, based on the output
image, this method cannot eliminate the background
areas while eliminating the noises in the image. Mean-
while, the proposed DIHS-BR method has successfully
eliminated the noises and unwanted floating particles
while removing the background areas. In terms of
EBCM, the proposed method produces the highest
value compared with the other methods because it

Table 1. Quantitative evaluation of the different methods for the phytoplankton diatom image in Figures 18-20.

Qualitative performance measures

Figure Method Entropy 1t MSE | PSNR 1 AMBE | ulQl 1 EBCM 1 Processing time (s)
Cyclotella DIRS-CLAHS 2.864 2074 14.963 35.621 0.183 81.352 0.956
CLAHE 6.294 1945 15.241 40.974 0.258 75.671 0.611
PCM 6.978 2450 14.239 41.110 0.143 60.061 1.882
NUCE 7.460 2887 13.526 34.714 0.161 54.680 26.580
DCP-RS 6.408 1002 18.120 15.902 0.397 80.217 0.574
RO-CLAHS + DIWF 6.757 856 18.803 4171 0.247 78.162 1.309
TCE 6.924 1591 16.114 32.668 0.182 69.774 0.869
DIHS-BR 0.427 2747 13.742 46.503 0.032 82.621 1.578
Cocconeis DIRS-CLAHS 3.546 8305 8.937 82.844 0.275 82431 0.964
CLAHE 6.382 707 19.633 19.980 0.340 58.890 0.585
PCM 7.078 1254 17.146 19.976 0.187 42.849 1.849
NUCE 7.329 2149 14.807 1.708 0.167 44.262 36.400
DCP-RS 6.509 4167 11.932 56.067 0.367 82.108 0.569
RO-CLAHS + DIWF 6.841 2695 13.825 40.390 0.245 80.683 0.957
TCE 6.809 1502 16.363 30.257 0.298 80.584 0.842
DIHS-BR 0.284 9961 8.148 93.500 0.0319 83.828 1.548
Hemialus DIRS-CLAHS 3.129 3358 12.870 54.090 0.258 82.283 2183
CLAHE 7.016 2352 14.415 42.442 0.344 58.488 0.566
PCM 7.633 3833 12.294 42.822 0.200 51.798 2.547
NUCE 6.944 1901 15.339 36.665 0.382 53.229 67.381
DCP-RS 6.470 550 20.722 18.213 0.571 82.060 1.358
RO-CLAHS + DIWF 7.047 524 20.931 4.840 0.376 78.447 0.928
TCE 7.003 2793 13.700 46.611 0.268 55.309 0.987
DIHS-BR 0.927 3953 12.161 57.590 0.086 82.364 1.509

Note: The value in bold represents the best result from the comparison.



THE IMAGING SCIENCE JOURNAL 15

Resultant Image 3D RGB Color Model Resultant Image 3D RGB Color Model
W RGB values I values 1 RGB values
N - P e -
0 ‘, 100 100 T, w0

values

RGB values

(g) RO-CLAHS+DIWF

Green oo Red

(b) DIRS-CLAHS

Scatterplot: RGB values corresponding to real values.

(d) PCM

‘ Scatterplot: RGB values corresponding to real values

(f) DCP-RS

Scatterplot: RGB values corresponding to real values

(h) TCE

Scatterplot: RGB values corresponding to real values

(i) DIHS-BR

Figure 18. Image of Cyclotella: (a) original image and the output images of (b) DIRS-CLAHS, (c) CLAHE, (d) PCM, (e) NUCE, (f) DCP-
RS, (g) RO-CLAHS + DIWF, (h) TCE, and (i) the proposed DIHS-BR method.

significantly increases the edge contrast of the phyto-
plankton cell.

Cyclotella and Cocconeis in Figures 18 and 19 show
that the resultant images produced by DIRS-CLAHS
(Figure 18(b) and Figure 19(b)) demonstrated improved
overall appearance when the noise and haze are

minimized. The background of the images is significantly
improved because all debris and floating particles are
removed. However, the images are under-contrast
because the phytoplankton cell areas seem dark and
difficult to identify. Similar effects have been observed
to the output images of the NUCE, DCP-RS, and RO-
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Figure 19. Image of Cocconeis: (a) original image and the output images of (b) DIRS-CLAHS, (c) CLAHE, (d) PCM, (e) NUCE, (f) DCP-

RS, (g) RO-CLAHS + DIWF, (h) TCE, and (i) the proposed DIHS-

CLAHS + DIWF methods (Figures 18e-g) because the
phytoplankton cells are considerably dark due to
under-contrast. Furthermore, these methods reduce the
image colour, resulting in low saturation and brightness.

CLAHE and PCM (Figures 18c and d) enhance the
image contrast and produce sharp edge cells.
However, the image background produces a large
amount of noise because it transforms the image

BR method.

phase into magnitude variations to improve the
image structural details and visibility. TCE (Figure
18h) produces a low-quality image because the
image output is under-contrast, and the surrounding
areas seem dark. Furthermore, this method has more
blurred edges of the phytoplankton cells in the
image even after implementing a Gaussian filter to
reduce the image noise level.
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Figure 20. Image of Hemialus: (a) original image and the output images of (b) DIRS-CLAHS, (c) CLAHE, (d) PCM, (e) NUCE, (f) DCP-
RS, (g) RO-CLAHS + DIWF, (h) TCE, and (i) the proposed DIHS-BR method.

The DIHS-BR method (Figure 18i) produces the best
output result in terms of contrast, colour, and bright-
ness. This method enhances the overall image and
removes the image background in the final output,
leaving only the phytoplankton cell. The image
shows that the cell edge contrast is sharp after remov-
ing the noises by applying the haze removal tech-
nique. Furthermore, the contrast and brightness are

highly improved. Based on the visual observation, no
over — or under-enhanced areas are visible in the
output image. The quantitative evaluation supports
the reason because this method produces the
highest EBCM with a value of 82.621.

With regard to the Hemialus image in Figures 20(b)
and (f), DIRS-CLAHS and DCP-RS improved the image
contrast and eliminated noise. However, the image’s
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Figure 21. Distribution of the average performance evaluation in terms of entropy, MSE, PSNR, AMBE, UIQIl, and EBCM.

background still contains a dark spot and makes the phy-
toplankton cell difficult to observe. Meanwhile, PCM
(Figure 20d) produces a low-quality output image with
noises due to the over-contrast, resulting in a darkened
phytoplankton cell. CLAHE and TCE under-enhance the
overall appearance of the output images. RO-CLAHS +

DIWF (Figure 20g) increases the cell's brightness and
colour, but it produces a large amount of noise in the
background. The phytoplankton cell is still difficult to
observe because the background colour is dark. DIHS-
BR is the best method for enhancing the overall phyto-
plankton cell in terms of contrast, edge, brightness,
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details, and noise reduction. Quantitative evaluation
shows that the DIHS-BR method produces the highest
values of EBCM for images in Figures 18-20 with
values of 82.621, 83.828, and 82.364, respectively.
Figure 21 represents the distribution of the respect-
ive quantitative performance range of the compared
methods in terms of entropy, MSE, PSNR, AMBE, UIQlI,

50 * ><7 |
1

M DIRS-CLAHS [ CLAHE [ pcM [T NucE DCPl-RS B RO-CLAHS+DIWF [l TCE [l DIHS-BR

and EBCM. Not all quantitative evaluations show sig-
nificant results because the main and best evaluation
of the proposed DIHS-BR method is by qualitative
evaluation through the HVS. Furthermore, the objec-
tive of the proposed method is to successfully extract
the phytoplankton cell for the identification and
classification processes.
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Table 2. Average performance of the enhancement techniques for Figures 18-20.

Qualitative performance measures

Method Entropy 1 MSE | PSNR 1 AMBE | ulal 1 EBCM 1 Processing time (s)
DIRS-CLAHS 3.180 4579 12.257 57.518 0.239 82.022 1.368
CLAHE 6.564 1668 16.430 34.465 0314 64.350 0.588
PCM 7.230 2512 14.560 34.636 0.177 51.569 2.093
NUCE 7.244 2312 14.557 24.362 0.237 50.724 48.454
DCP-RS 6.462 1906 16.925 30.061 0.445 81.462 0.834
RO-CLAHS + DIWF 6.882 1358 17.853 16.467 0.289 79.097 1.065
TCE 6.912 1962 15.392 36.512 0.249 68.556 0.810
DIHS-BR 0.546 5554 11.350 65.864 0.050 82.938 1.545

Note: The value in bold represents the best result from the comparison.

Table 3. Average dataset performance of the proposed DIHS-BR method for 100 samples of phytoplankton images.

Qualitative performance measures

Method Entropy 1 MSE | PSNR 1 AMBE | ulal 1 EBCM 1 Processing time (s)
DIRS-CLAHS 4170 13371 8.102 99.178 0.215 80.715 1.598
CLAHE 6.525 994 18.920 23.722 0.384 31.425 0.906
PCM 7.160 2108 15.720 25.057 0.210 35.363 2.562
NUCE 7.071 3385 14.178 38.764 0.265 50.245 72.998
DCP-RS 6.634 5717 12.583 57.984 0.396 57.066 1.847
RO-CLAHS + DIWF 7.029 4952 12.764 51.566 0.268 55.167 1.129
TCE 6.726 4148 15.236 43.512 0.336 61.651 1.327
DIHS-BR 0.663 16193 7.094 112.121 0.049 83.065 2173

Note: The value in bold represents the best result from the comparison.

Table 2 shows the average dataset of the quantitat-
ive evaluation for Figures 18-20 of the phytoplankton
images. As previously discussed, quantitative measure-
ment is used for the comparison and does not reflect
the actual quality and the main objective of the pro-
posed method because the proposed DIHS-BR
method extracts all the background areas and retains
the phytoplankton cell in the final output image.
Therefore, all details of the image, except the phyto-
plankton cell, will be lost. The results show that the
proposed DIHS-BR method produces the highest
value of EBCM, indicating the significant EBCM.

Table 3 shows the average dataset of the quantitat-
ive evaluation for 100 phytoplankton images. The
results demonstrate that the proposed method pro-
duces the highest value of EBCM, indicating a significant
EBCM compared with the other state-of-the-art
methods. Furthermore, the proposed method produces
the best results in terms of contrast, edge sharpness,
colour, and brightness because the phytoplankton cell
is significantly removed from the background. As pre-
viously mentioned, the proposed DIHS-BR method is
proposed to automatically remove the background
and noise of the phytoplankton image and improves
the image quality while cropping an individual image
of a phytoplankton cell. Therefore, visual observation
(qualitative evaluation) emphasizes the overall image
quality in terms of image processing and used as the
main evaluation method. In this work, quantitative
measurements are to support qualitative impressions.
However, since the main purpose of this research
work is to extract the phytoplankton cell while remov-
ing the background and other foreign particles which
are parts of the original image, the proposed method

is reducing the quantitative image details (measured
through entropy and universal image quality index
(UIQI)) as the image background except the phytoplank-
ton cell are removed. Meanwhile, the mean squared
error (MSE) will increase and the peak signal-to-noise
ratio (PSNR) will decrease because the extracted
output image is different from the input image due to
the removal of the output image’s background. The
primary comparative measurement to prove the effec-
tiveness of the proposed DIHS-BR method is still the
qualitative evaluation. The quantitative evaluation in
Table 3 is for the purpose of comparison with other
methods and for experimental purposes if the quanti-
tative measurements agree with qualitative evaluations.

Using MATLAB R2021a which is installed on a Micro-
soft Windows 10 with Intel Core i5, 2.90 GHz, 8BG RAM,
the average processing time to run the whole algor-
ithm for a single image with size of 1280 x 1024
pixels is around 2 s. The overall processing time of 2
s is deemed low and comparable with other state-of-
the-art methods for the best extraction results of the
phytoplankton cell. Experimental results show that
the proposed algorithm is suitable for practical uses
as the resultant images are in considerable quality
and the phytoplankton cell are highly visible and sep-
arated from the background. The Appendix contains
more sample images of the extracted phytoplankton
cells.

In the proposed DIHS-BR method, only the required
phytoplankton cell image should appear in the final
output image for cell identification and classification.
Both qualitative and quantitative evaluations are
used to evaluate the final results. However, qualitative
evaluation is used as the main evaluation method, as



the main purpose of the research work is to extract the
phytoplankton cell from the background. Removing all
unwanted background results in large differences
between the output image and the original image, as
most quantitative measurements do. Quantitative
measurements should support the qualitative evalu-
ation. In addition, the result of the proposed method
is also compared to the other state-of the-art
methods as described in Section 4.

Conclusion

The proposed DIHS-BR method consists of two major
steps. The first major step is contrast adaptive histo-
gram specification by means of dual intensity images
and involves modified global contrast correction,
enhanced local contrast correction, and colour correc-
tion. On the other hand, the second step refers to
enhanced background removal which is designed
improved mask cropping and haze removal.

The experimental results shown that the proposed
DIHS-BR method has successfully extract the
individual phytoplankton cell while enhancing the
overall image of phytoplankton cells in terms of con-
trast, colour, details, brightness, edge sharpness, and
noise elimination as compared with the other state-
of-the-art methods. The results show that the
proposed DIHS-BR method significantly improves
the visibility and details of the object in an image.
DIHS-BR method is proposed as a pre-processing
step for the preparation toward phytoplankton detec-
tion and classification.

Nevertheless, in some cases, when more than one
type of phytoplankton exists in an image, the proposed
method tends to extract only the complete shape of the
phytoplankton or it could extract all of these phyto-
plankton if these phytoplankton are located and touch-
ing side by side to each other or overlapped to each
other. Otherwise, the proposed algorithm will consider
these as background. This limitation will be considered
as the future work of this research.
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Appendix B

Quantitative evaluations of the images in Appendix A.

Qualitative performance measures

Figure Method Entropy 1 MSE | PSNR 1 AMBE | ulQl 1 EBCM 1
Image 1 DIRS-CLAHS 54171 23184.800 44788 145.477 0.205 81.012
CLAHE 6.720 859.022 18.791 23.314 0.424 16.567
PCM 7.447 2129.396 14.848 23.451 0.230 28.978
NUCE 6.795 2877.541 13.541 47.143 0.303 44814
DCP-RS 6.700 1345.469 16.842 28.618 0.455 29.089
RO-CLAHS + DIWF 7.127 1775.264 15.638 30.188 0314 33.518
TCE 6.381 682.944 19.787 18.321 0.502 9.954
DIHS-BR 0.422 29050.444 3.500 165.350 0.039 83.681
Image 2 DIRS-CLAHS 2.928 24917.764 4.166 152.246 0.216 82.525
CLAHE 5.988 472.924 21.383 17.765 0.401 9.115
PCM 6.830 925.001 18.469 18.088 0.222 23.351
NUCE 7.352 6425.441 10.052 64.834 0.118 40.792
DCP-RS 5.966 18694.507 5414 131.415 0.261 82.005
RO-CLAHS + DIWF 6.531 14850.921 6.413 116.040 0.184 81.203
TCE 6.409 12533.215 7.150 106.540 0.218 81.885
DIHS-BR 0.390 26915.425 3.831 159.497 0.033 84.197
Image 3 DIRS-CLAHS 4.579 2834.951 13.605 36.360 0.289 77.618
CLAHE 6.690 1858.456 15.439 38.038 0.362 64.687
PCM 7.330 3810.731 12.321 46.298 0.212 47.397
NUCE 6.563 3547.226 12.632 53.238 0.410 49.977
DCP-RS 6.682 3608.450 12.558 50.884 0.493 44,737
RO-CLAHS + DIWF 6.862 4111.205 11.991 56.014 0.330 37.154
TCE 7.100 2781.417 13.688 42.509 0.337 63.312
DIHS-BR 0.460 4463.855 11.634 58.031 0.082 84.219
Image 4 DIRS-CLAHS 5.558 6713.025 9.862 73.802 0.302 79.511
CLAHE 7.433 1413.705 16.627 24.018 0.441 36.030
PCM 7.644 4062.110 12.043 24.637 0.232 37.870
NUCE 7.243 804.860 19.074 14.300 0.423 44914
DCP-RS 7.235 1221.540 17.262 23.423 0.564 26.587
RO-CLAHS + DIWF 7.626 2062.353 14.987 26.532 0.368 34,051
TCE 7.179 1238.164 17.203 18.777 0.423 35.499
DIHS-BR 0.918 11000.267 7.717 97.038 0.045 82.839
Image 5 DIRS-CLAHS 5.314 21992.215 4,708 140.973 0.112 80.697
CLAHE 5.672 349919 22.691 15.639 0.353 4.876
PCM 6.614 698.616 19.688 15.640 0.192 23.041
NUCE 7.582 6497.675 10.003 57.986 0.080 46.088
DCP-RS 7.135 9806.926 8.216 89.762 0.110 55.603
RO-CLAHS + DIWF 7.301 8365.614 8.906 80.351 0.102 44.242
TCE 6.610 10642.060 7.861 98.420 0.152 80.746
DIHS-BR 6.310 4625.516 11.479 61.394 0.056 82.779
Image 6 DIRS-CLAHS 3.149 4657.029 11.450 55.366 0.227 82.898
CLAHE 6.722 1507.890 16.347 33.566 1.304 43.799
PCM 7.174 1978.515 15.167 33.510 0.166 44.664
NUCE 7.125 2972.587 13.400 20.720 0.155 46.817
DCP-RS 5.785 2339.825 14.439 37.625 0.324 82.567
RO-CLAHS + DIWF 6.574 1640.706 15.981 21.229 0.212 82.074
TCE 6.665 591.693 20.410 11.467 0.344 82.881
DIHS-BR 0.465 5381.522 10.822 59.690 0.038 83.347
Image 7 DIRS-CLAHS 2.385 1552.992 16.219 9.504 0.104 78.208
CLAHE 6.555 2496.256 14.158 45.297 0.220 76.551
PCM 7.180 3425.613 12.783 45557 0.120 73.790
NUCE 7.509 4342.843 11.753 47.465 0.117 61.840
DCP-RS 6.335 1493.350 16.389 7.387 0.263 76.523
RO-CLAHS + DIWF 6.716 1660.462 15.929 15.498 0.191 76.078
TCE 7.029 2249527 14.610 27.487 0.164 77.643
DIHS-BR 0.877 1525.283 16.297 21.731 0.048 82.376
Image 8 DIRS-CLAHS 5.446 18076.610 5.560 126.817 0.114 79.552
CLAHE 5.667 163.739 25.990 8.519 0.357 80.172
PCM 6.616 511.633 21.041 8.518 0.194 30.767
NUCE 7.603 4668.048 11.440 42.604 0.087 45.856
DCP-RS 7.184 6230.173 10.186 68.410 0.118 46.819
RO-CLAHS + DIWF 7.335 5514.343 10.716 61.324 0.110 41.641
TCE 6.530 9007.818 8.585 90.605 0.177 81.348
DIHS-BR 0.423 23163.955 4483 147.427 0.031 83.997
Image 9 DIRS-CLAHS 5.834 7064.788 9.640 72.045 0.225 79.780
CLAHE 6.904 848.905 18.842 20.677 0.405 34.140
PCM 7.572 2390.737 14.346 20.971 0.217 36.873
NUCE 7.163 1167.745 17.457 16.874 0.289 43.794
DCP-RS 7.026 3025.204 13.323 46.196 0417 18.701
RO-CLAHS + DIWF 7.350 2743.574 13.748 38.260 0.299 28.524
TCE 6.808 2180.885 14.745 37.936 0.357 23.013
DIHS-BR 0.482 11836.185 7.399 102.448 0.039 83.024

(Continued)



THE IMAGING SCIENCE JOURNAL e 27

Continued.
Qualitative performance measures
Figure Method Entropy 1 MSE | PSNR 1 AMBE | ulQl 1 EBCM 1
Image 10 DIRS-CLAHS 5717 19587.985 5211 131.239 0.171 79.103
CLAHE 6.948 961.763 18.300 21.357 0.404 21.684
PCM 7.661 2807.512 13.648 21.560 0.217 30.177
NUCE 7.297 3016.960 13.335 42.131 0.234 42.139
DCP-RS 7.239 2185.854 14.735 29.900 0.323 40.905
RO-CLAHS + DIWF 7483 2584.733 14.007 30.527 0.261 37.773
TCE 6.723 667.926 19.884 19.268 0.512 9.884
DIHS-BR 0.174 27500.168 3.738 161.205 0.031 84.416
Image 11 DIRS-CLAHS 3.833 3949.161 12.166 58.181 0.242 83.090
CLAHE 6.298 1460.480 16.486 35.300 0.323 69.975
PCM 6.986 2012.853 15.093 35.360 0.194 59.674
NUCE 6.870 1731.023 15.748 34.099 0.324 57.138
DCP-RS 6.740 402.725 22.081 5.027 0.441 82.018
RO-CLAHS + DIWF 6.866 525914 20.922 8.817 0.298 77.850
TCE 6.575 1041.560 17.954 27.179 0.297 75.525
DIHS-BR 0.480 5231.322 10.945 68.084 0.109 83.446
Image 12 DIRS-CLAHS 3.859 2843.232 13.593 48.295 0.237 82.629
CLAHE 6.906 2613.254 13.960 46.315 0.279 58.841
PCM 7.540 3847.694 12.279 46.810 0.153 49.045
NUCE 6.962 2429.894 14.275 42.752 0.276 54.410
DCP-RS 6.794 346.413 22.735 0.961 0.430 80.923
RO-CLAHS + DIWF 7.102 991.706 18.167 20.630 0.264 71.318
TCE 7.139 1412.381 16.631 26.432 0.245 73.421
DIHS-BR 0.756 3676.346 12.477 55.920 0.074 83.310
Image 13 DIRS-CLAHS 2717 2377.998 14.369 40.715 0.637 82.011
CLAHE 5.951 1586.916 16.125 36.188 0.382 79.411
PCM 6.498 1991.615 15.139 36.159 0.197 77.487
NUCE 6.566 2050.831 15.012 37.075 0.607 79.887
DCP-RS 6.535 790.841 19.150 1.851 0.701 80.842
RO-CLAHS + DIWF 6.939 777.629 19.223 6.567 0.419 79.907
TCE 6.437 490.497 21.224 3.706 0.478 82.881
DIHS-BR 1.002 2707.039 13.806 44.522 0.651 83.190
Image 14 DIRS-CLAHS 2.246 9299.564 8.446 90.022 0.157 80.745
CLAHE 6.453 497.411 21.164 13.715 0.403 44.902
PCM 7.084 1156.436 17.500 13.766 0.220 42.242
NUCE 6.837 573.423 20.546 13.128 0.364 78.315
DCP-RS 6.937 3006.656 13.350 44.160 0.570 78.575
RO-CLAHS + DIWF 7.180 1861.009 15433 30.605 0.364 73.925
TCE 6.735 572.519 20.553 8.550 0.378 77.280
DIHS-BR 1.337 9516.966 8.346 85.431 0.070 79.068

Note: The value in bold represents the best result from the comparison.
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