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A B S T R A C T   

Background and objective: Respiratory mechanics of mechanically ventilated patients evolve significantly with 
time, disease state and mechanical ventilation (MV) treatment. Existing deterministic data prediction methods 
fail to comprehensively describe the multiple sources of heterogeneity of biological systems. This research 
presents two respiratory mechanics stochastic models with increased prediction accuracy and range, offering 
improved clinical utility in MV treatment. 
Methods: Two stochastic models (SM2 and SM3) were developed using retrospective patient respiratory elastance 
(Ers) from two clinical cohorts which were averaged over time intervals of 10 and 30 min respectively. A sto-
chastic model from a previous study (SM1) was used to benchmark performance. The stochastic models were 
clinically validated on an independent retrospective clinical cohort of 14 patients. Differences in predictive 
ability were evaluated using the difference in percentile lines and cumulative distribution density (CDD) curves. 
Results: Clinical validation shows all three models captured more than 98% (median) of future Ers data within the 
5th – 95th percentile range. Comparisons of stochastic model percentile lines reported a maximum mean ab-
solute percentage difference of 5.2%. The absolute differences of CDD curves were less than 0.25 in the ranges of 
5 < Ers (cmH2O/L) < 85, suggesting similar predictive capabilities within this clinically relevant Ers range. 
Conclusion: The new stochastic models significantly improve prediction, clinical utility, and thus feasibility for 
synchronisation with clinical interventions. Paired with other MV protocols, the stochastic models developed can 
potentially form part of decision support systems, providing guided, personalised, and safe MV treatment.   

1. Introduction 

Mechanical ventilation (MV) is the primary form of support for 
critically ill patients with respiratory failure [1]. Existing MV treatment 
guidelines adopt a ‘one-size-fits-all’ approach and have been primarily 
developed in studies of patients with acute respiratory distress syndrome 
(ARDS) [2–4]. This generalised treatment approach fails to account for 
heterogeneity across patients in terms of patient disease state and 
importantly, respiratory mechanics. Subsequently, it leads to some pa-
tients receiving non-optimal MV, resulting in ventilator-induced lung 
injury (VILI) and worsening outcomes [1,5–8]. Patient-specific respira-
tory mechanics evolve significantly with time, disease state, and MV 

treatment, ensuring optimal care does not remain so [1,9]. Therefore, 
the ability to capture and predict the evolving dynamics of these vari-
ables over time could aid clinicians in personalising MV treatment [10]. 

Existing data prediction methods, such as regression and clustering 
techniques are non-physiological and highly dependent on training data 
sets [11–13]. Furthermore, they cannot account for the heterogeneity of 
biological systems at the level of the individual patient and thus are not 
patient-specific [14,15]. In contrast, in deterministic physiological 
modelling, a lack of information results in model simplification, where 
the resulting identified parameters contain variability manifesting as 
system stochasticity [15]. Hence, stochastic models are required to 
model these intrinsic sources of heterogeneity and variability in 
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deterministic, physiological models [14,15]. 
Stochastic modelling is based on probability theory, whereby a 

Markov jump process is used to model biological system dynamics. Thus, 
unlike deterministic modelling, it allows different solutions to arise from 
the same input [14,15]. Stochastic models have received increased 
attention in describing the dynamics of biological systems [16–19], such 
as glycaemic control protocols in critical care [20–24]. The integration 
of stochastic forecasting into glycaemic control protocols produced 
tighter glycaemic control in 89.4% of ICU (intensive care unit) patients, 
while also significantly reducing hypoglycaemia episodes and ultimately 
reducing clinical workload [25,26]. Therefore, stochastic modelling has 
the potential to support personalised medicine in environments like 
intensive care, where heterogeneity challenges more traditional deter-
ministic modelling approaches. 

In the context of MV research, stochastic modelling has recently been 
investigated for predicting respiratory system elastance in respiratory 
failure patients [7]. Retrospective respiratory elastance values were 
obtained via model-based estimation and grouped into time intervals of 
10 min, capturing short-term intra-patient variability. This data was 
used to develop and validate a stochastic model to predict future 
patient-specific respiratory elastance values, with 92.59% and 68.56% 
of the predicted values within the 90 (5th – 95th) and 50 (25th – 75th) 
percent ranges, respectively. 

While this study demonstrates the feasibility of stochastic modelling 
in MV care, its clinical utility is limited. In particular, this stochastic 
model was trained with data from a single cohort of only 24 patients, 
and clinical validation was limited because it was performed on patients 
from the same cohort. Moreover, the selected proof-of-concept interval 
size of 10 min would not be feasible for application in critical care as it 
would lead to a significant increase in clinician workload [27]. 

Respiratory elastance plays an important role in representing respi-
ratory system function and the progression of patient-specific disease 
states [28]. It is defined as a measure of the elastic properties of the 

respiratory system which includes the lungs and chest wall [29,30]. A 
patient’s respiratory elastance is typically measured using an 
end-inspiratory pause or by using model-based methods [9,28,31–35]. 
Measurements of respiratory elastance are also important for guiding 
the selection of MV settings. Suter et al. investigated the selection of 
positive end-expiratory pressure, PEEP based on respiratory compliance 
(inverse of elastance) [36]. In this study, the authors reported that the 
selection of PEEP at the highest compliance (or lowest respiratory ela-
stance) also resulted in maximum oxygen delivery and lowest 
dead-space fraction. Other studies on respiratory elastance have also 
been carried out, suggesting that elastance can be used to guide MV 
settings [37,38]. In certain ARDS (acute respiratory distress syndrome) 
phenotypes, a physiologic approach of elastance-based PEEP titration 
may lead to better patient outcomes as compared to oxygenation-based 
PEEP strategies [39]. 

This research presents respiratory mechanics stochastic models with 
increased prediction accuracy by using patient data from two different 
patient cohorts. Increasing training data provides a wider, more clini-
cally complete respiratory elastance prediction range. An interval of 30 
min bridges the gap between simulation and practical clinical utility. 
Finally, this study provides more extensive clinical validation of the 
extended stochastic model based on the work of Lee et al. [7] using data 
from an independent patient cohort. The end result is more robust, 
clinically more relevant and applicable, creating the potential for per-
sonalised real-time MV care. 

2. Methodology 

2.1. Clinical patient data 

This study uses measured airway pressure and flow data from 68 
retrospective patients across three clinical cohorts receiving invasive 
MV for respiratory failure [32,40]. The three cohorts (ethics approval) 

Table 1 
Patient cohorts.  

Patient cohort No. of patients Days of recorded data No. of recorded breaths Age Weight (kg) BMI (kg/m2) 

CARE01 24 113 2,120,834 57.00 [48.00–64.00] 65.00 [53.93–77.18] 24.75 [19.98–29.64] 
CARESG 14 35 742,493 67.38 [54.56–70.00] 68.47 [59.40–77.17] 23.22 [22.98–23.94] 
CARE02 30 200 4,783,264 62.50 [55.00–66.00] 67.50 [60.00–78.75] 24.52 [23.00–27.88] 

*Age, weight and BMI values are presented as median [interquartile range]. 

Fig. 1. A typical respiration pressure (left), flow (middle), and volume (right) waveform. PIP is the peak inspiratory flow, PEEP is the positive end-expiratory 
pressure, and VT is the tidal volume. The inspiration and expiration portions of the breath are also shown as well as the maximum inspiratory flow rate. 
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are denoted: 1) CARE01 (Ref: IIUM/504/14/11/2/IREC 666); 2) CARESG 
(DSRB Ref:2018/00042); and 3) CARE02 (Ref: IIUM/504/14/11/2/IREC 
2020–100). Details are shown in Table 1. 

Ventilator data was recorded using a MV data acquisition system 
connected to a Puritan Bennett 980 ventilator (Covidien, Boulder, CO, 
USA) [41,42]. Mechanical ventilation airway pressure (cmH2O) and 
flow (L/min) were recorded at a sampling rate of 50 Hz. Each breathing 
cycle is separated and filtered to remove small data fluctuations and to 
ensure completeness of individual breaths. Filtering criteria are defined 
for each breath [7,33]. Each breath must have the following:  

• The start of inspiration is defined as the first overall increase in flow 
rate (greater than 0.1 L/s) and pressure (2 cmH2O above positive 
end-expiratory pressure, PEEP). Data is checked over the next 8 data 
points (0.16 s) to ensure constant positive flow.  

• The start of expiration is defined as the first overall decrease in flow 
rate (less than − 0.1 L/s). Data is checked over the next 8 data points 
(0.16 s) to ensure constant negative flow.  

• Peak Inspiratory Volume (PIV) reaches or exceeds approximately 
10% of a typical tidal volume (40 mL).  

• Peak Inspiratory Pressure (PIP) is of significant value (PIP > (PEEP +
1 cmH2O), where typical PIP is approximately 10–14 cmH2O above 
PEEP.  

• Maximum flow rate exceeds 6 L/min.  
• Expiration is detected within 4.125 s of the calculated onset of 

inspiration as defined above.  
• Asynchronous breaths are filtered [7,33]. 

A typical respiratory pressure, flow and volume waveform is shown 
in Fig. 1. Furthermore, MV settings and parameters such as positive end- 
expiratory pressure, PEEP; peak inspiratory pressure, PIP; tidal volume, 
VT; inspiratory to expiratory ratio, I:E ratio; respiration rate, RR; minute 
ventilation, and the maximum inspiratory flow of each breath are 
recorded [1]. A Kruskal-Wallis one-way analysis of variance test is also 
performed to determine if the ventilator settings and parameters are 
significantly different between the three patient cohorts. 

2.2. Stochastic model development 

Stochastic modelling is used to approximate potential outcomes for a 
process showing stochasticity, where probability densities can be 
created by recording stochastic variables as a function of time [7]. In this 
research, respiratory elastance derived from a single compartment lung 
model is used for the stochastic model development. Lung condition and 
response to MV can be characterised using this respiratory mechanics 
model [29,43,44]: 

Paw(t) =ErsV(t) + RrsV̇(t) + Po (1)  

Where Paw is the airway pressure (cmH2O), t is the time, Ers is the res-
piratory elastance of a single breath (cmH2O/L), V is the volume (L), Rrs 

is the respiratory resistance of a single breath (cmH2Os/L), V̇ is the 
airflow (L/s), Po is the offset pressure or PEEP (cmH2O) when there is no 
auto-PEEP. 

Using airway pressure and flow data obtained from the ventilator, 
(1) can be solved for Ers and Rrs using integral-based parameter identi-
fication from the equation defined: 
∫

Paw(t) dt=Ers

∫

V(t) dt + Rrs

∫

V̇(t) dt +
∫

Po dt (2)  

Where the use of integrals significantly increases robustness to noise 
[32,43,45]. 

For each patient cohort, Ers and Rrs for all breaths are identified and 
recorded. A Kruskal-Wallis one-way analysis of variance test is per-
formed to determine if the identified respiratory mechanics (Ers and Rrs) 
are significantly different between the patient cohorts. 

Ers is identified and recorded for all patient breaths, and are averaged 
into mean values over set time intervals, Ers N, where N is a selected time 
interval. In this study, N is chosen as 10 and 30 min. The mean Ers data 
are sorted into data pairs of Ers N and Ers N+1, which are the mean res-
piratory elastance values of the current N-minute interval and the sub-
sequent N-minute interval, respectively. The sorted data pairs obtained 
from the patient cohorts form the basis of the stochastic model [7]. 

The stochastic model based on a two-dimensional kernel density 
estimation (KDE) method is used as the distribution of Ers N+1 varies with 
Ers N, and cannot be described using standard statistical distributions [7, 
21]. The variations in Ers N can be described as a Markov jump process, 
where the conditional probability density function of future Ers N values 
depends only upon the current Ers N value. The conditional probability 
density of Ers N+1 = y given the value of Ers N = x can be described using 
the Bayes Theorem: 

P
(
Ers,N+1 = y

⃒
⃒Ers,N = x

)
=

P
(
Ers,N+1 = y,Ers,N = x

)

P
(
Ers,N = x

) =
αi

βi
(3) 

A conditional probability function can be used to describe future 
values of Ers N which can be calculated using KDE [46]: 

αi =P(x, y)=
1
n

∑n

i=1

∅
(

x; xi, σ2
xi

)

pxi

∅
(

y; yi, σ2
yi

)

pyi

(4)  

Where αi is the 2-dimensional kernel density estimated joint probability 
density function, P(x,y), and is defined by the fitted values of Ers data 
pairs with coordinates xi and yi. The terms ∅(x; xi, σ2

xi
) and ∅(y; yi, σ2

yi
)

represent the normal probability distribution function centered at in-
dividual data points of xi and yi, with σ2

xi 
and σ2

yi 
being the square of the 

variances, yielding: 

pxi =

∫ ∞

0
∅
(

x; xi, σ2
xi

)
(5)  

pyi =

∫ ∞

0
∅
(

y; yi, σ2
yi

)
(6) 

Putting (5) and (6) in (4) ensures that the probability distributions 
are normalised in the positive domain, thus enforcing physiological 
validity with non-negative Ers values. βi can be calculated by integrating 
(4) with respect to y: 

βi =

∫

P(x, y)dy=
1
n

∑n

i=1

∅
(

x; xi, σ2
xi

)

pxi

∫ ∅
(

y; yi, σ2
yi

)

pyi

dy=
1
n

∑n

i=1

∅
(

x; xi, σ2
xi

)

pxi

• 1
(7) 

Thus, (3) can be expressed as: 

P
(
Ers,N+1 = y

⃒
⃒Ers,N = x

)
=

∑n

i=1

∅(x;xi ,σ2
xi )

pxi

∅(y;yi ,σ2
yi )

pyi

∑n

i=1

∅(x;xi ,σ2
xi )

pxi

(8)  

Where (8) defines the two-dimensional KDE for the conditional varia-
tion of Ers, where Ers depends on its prior state. 

This approach allows the probability of Ers at the time interval N+1 
(Ers N+1 = y) to be calculated given Ers at time point N (Ers N = x) is 
known. Detailed steps for calculating P(y|x) are described by Lin et al. 
[20]. In addition, the variance estimators (i.e., σx and σy) are multiplied 
with a constant c, which effectively adjusts the kernel bandwidth and the 
degree of smoothing over the data [22]. To ensure comparability with 
the stochastic model previously developed by Lee et al. (SM1), this 
constant was set to a value of 1. The result is a 3-dimensional stochastic 
model of Ers variability. The percentile lines represent the probability 
interval of future Ers N+1 values, which can be used to assess the potential 
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and risk of changes in MV settings and care. In this study, three different 
stochastic models are developed using different training datasets and 
time intervals, all of which are detailed in Table 2. 

2.3. Validation of stochastic models 

The developed stochastic models require self-validation, cross-vali-
dation, and clinical validation to provide a comprehensive assessment of 
the model’s performance. For model self-validation, the developed sto-
chastic models are used to generate probability intervals of potential Ers 
values (Ers N+1 sim) over the range of identified Ers N values. The actual Ers 

N+1 measurements are then compared to the predicted Ers N+1 sim 

probability intervals. The testing and training data are the same, 
providing a best-case estimate. 

A 5-fold cross-validation is also performed to evaluate model 
robustness [7,24]. The training dataset is divided into 5 approximately 
equisized sets of data pairs, 4 of which are used to develop the stochastic 
model, and the remaining set is used as test data. Data in the test sets of 
each validation fold are unique and non-repeating. In each validation 
fold, each Ers from the test dataset is used to predict Ers N+1 probability 
intervals. The percentage of actual Ers N+1 values that are within the 
model-predicted 25th – 75th and 5th – 95th percentile range are 
compared to the ideal values of 50% and 90%, respectively. Results 
showing less deviation from the ideal values indicate good model pre-
diction performance. Low variation in the cross-validation outcomes 
would indicate data sufficiency and model robustness. This 
cross-validation process is performed on all three stochastic models. 

In addition, model performance is evaluated using retrospective 
patient data for clinical validity. Similar methods of validation have 
been presented in prior stochastic modelling studies [22,24]. Each of the 
three developed stochastic models is used to analyse patients from the 
CARESG cohort. The stochastic models are used to predict the range of 
future Ers N+1 values and then compared to the actual Ers N+1 values. 

The percentage of actual patient Ers N+1 values falling within the 
stochastic model predicted 25th – 75th and 5th – 95th percentile range 
are analysed. For each patient, only the first 12 h of patient data are 
analysed to ensure consistency and comparability across cohorts. Patient 

Table 2 
Stochastic model parameters, where training data sets are defined demograph-
ically in Table 1.  

Stochastic Model Name SM1 SM2 SM3 

Time Interval, N (Minutes) 10 10 30 
Training Dataset (Patient 

Cohort) 
CARE01 CARE01, 

CARE02 

CARE01, 
CARE02 

No. of Patients 24 54 54 
No. of Days 113 313 313 
No. of Initial Breaths 2,120,834 6,904,098 6,904,098 
No. of Remaining Breaths After 

Filtering (Percentage, %) 
1,699,401 
(80.13) 

5,589,339 
(80.96) 

5,589,339 
(80.96) 

No. of Ers pairs 10,213 28,397 7,146  

Fig. 2. Histogram showing the probability density of Ers of patient cohorts: CARE01 (a), CARESG (b), and CARE02 (c). The probability density of Rrs of patient cohorts: 
CARE01 (d), CARESG (e), and CARE02 (f). 
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data are processed and sorted into time intervals, N, corresponding to 
each stochastic model. The median absolute percentage error (MAPE) of 
model fitting is also calculated: 

MAPE=Median
⃒
⃒
⃒
⃒
PSim − PActual

PSim
× 100%

⃒
⃒
⃒
⃒ (9)  

Where PSim is the pressure waveform forward simulated using the 
identified respiratory mechanics from (2) and PActual is the actual pres-
sure waveform obtained from the ventilator. It is assumed that the 
change in Ers is solely due to the evolution of the patient’s respiratory 
system condition, rather than the change in PEEP. Therefore, patient 
PEEP levels are also recorded throughout the duration of ventilation. 

2.4. Comparison of stochastic models 

SM1 is a stochastic model developed using data from a previous 
study by Lee et al. [7] and is the benchmark model. SM2 combines both 
CARE01 and CARE02 to form a bigger patient dataset. Finally, SM3 uses a 
larger time interval of 30 min with the same training set as SM2. These 
details are shown in Table 2. 

To compare the predictive abilities of the 3 stochastic models, the 
mean absolute percentage difference (MAPD) between each percentile 
(5th, 25th, 50th, 75th, and 95th) is calculated: 

MAPD=
1
K

∑K

i=1

⃒
⃒
⃒
⃒
⃒
⃒
⃒

SMa − SMb
SMa+SMb

2

⃒
⃒
⃒
⃒
⃒
⃒
⃒

× 100% (10)  

Where K is the total number of data points along the Ers N axis. SMa and 
SMb are the two stochastic models used for this analysis. 

Further, using each stochastic model, the generated conditional 
probability density (CPD) curve is converted to a cumulative distribu-
tion density (CDD) curve. Each slice of the surface along the Ers N+1 axis 
has an area under the curve summing to 1. The stochastic models will be 
compared by calculating the absolute difference between the CDD plots: 

Absolute difference=
⃒
⃒SMa,x,y − SMb,x,y

⃒
⃒ (11)  

Where x and y represent coordinates of individual data points along the 
Ers N and Ers N +1 axis, respectively. 

Regions of high absolute difference are defined as regions with an 
absolute difference greater than the arbitrarily selected threshold value 
of 0.25. The percentage difference of the total area under the curve 
(AUC) of the absolute difference plots, PDAUC are also calculated: 

PDAUC =
AUC

( ⃒
⃒SMa,x,y − SMb,x,y

⃒
⃒
)

AUC
(

SMa,x,y+SMb,x,y
2

) × 100% (12) 

This metric describes the average percentage difference per data 
point between two stochastic models across the entire range of Ers N. To 
ensure comparability, the limits of the Ers N axis used in the analyses 
above are limited from 5 to 125 cmH2O. Similar validation methods 
have been used to analyse blood glucose and insulin sensitivity sto-
chastic models [47]. 

3. Results 

3.1. Patient cohort and stochastic models 

The probability densities of Ers and Rrs of all three patient cohorts are 
presented in Fig. 2. The Ers and Rrs values used for all three patient co-
horts are presented in Table 3. While the Ers ranges are similar, the 
distributions of the identified respiratory mechanics are very different 
for all three cohorts (P < 0.05; Kruskal-Wallis). The Ers pairs used to 
develop SM1, SM2 and SM3 have a median [interquartile range] Ers 
value of 35.80 [26.22–45.27] cmH2O/L, 34.62 [24.94–45.46] cmH2O/ 
L, and 34.73 [25.15–45.34] cmH2O/L, respectively. The cumulative 
distribution density (CDF) plots of the overall MV settings and param-
eters of each patient cohort are presented in Fig. 3. A summary of all 
ventilator settings and parameters such as PEEP, PIP, VT, I:E ratio, 
minute ventilation, respiration rate, and maximum inspiratory flow are 
also presented in Table 3. These ventilator settings and parameters are 
significantly different between the patient cohorts (P < 0.05; Kruskal- 
Wallis), except for VT, which is not significantly different between the 
CARE01 and CARESG cohort, where this result is unsurprising as setting a 
tidal volume (VT) range to 6–8 ml/kg is one of the few well-accepted MV 
care guidelines [1,48,49]. 

The left column of Fig. 4 shows the conditional probability density 

Table 3 
Respiratory mechanics and ventilator parameters of the patient cohorts, where 
all settings are statistically significantly different (p < 0.05) between cohorts 
except for tidal volume (VT).  

Patient Cohort CARE01 CARESG CARE02 

Ers (cmH2O/L) 36.95 
[27.51–47.40] 

33.11 
[23.59–50.21] 

36.51 
[26.31–48.66] 

Rrs (cmH2O.s/L) 7.93 
[5.55–12.51] 

10.70 
[9.55–12.34] 

8.82 
[6.29–11.68] 

PEEP (cmH2O) 9.00 
[7.50–10.00] 

8.00 
[7.50–10.00] 

9.00 
[6.00–13.00] 

PIP (cmH2O) 23.06 
[20.01–28.47] 

24.39 
[20.80–28.69] 

28.13 
[19.66–31.17] 

VT (L) 0.36 [0.31–0.44] 0.37 [0.31–0.44] 0.38 [0.35–0.45] 
I:E ratio 0.53 [0.44–0.76] 0.57 [0.46–0.79] 0.49 [0.43–0.68] 
Respiration rate 

(breaths/min) 
20.83 
[16.13–26.79] 

22.22 
[17.34–30.30] 

25.21 
[20.55–35.29] 

Minute Ventilation 
(L/min) 

8.25 [6.69–9.92] 9.35 
[7.39–11.66] 

10.57 
[8.90–12.37] 

Max Inspiratory 
Flow (L/s) 

0.76 [0.55–0.96] 0.95 [0.72–1.17] 0.98 [0.81–1.11] 

*Results are reported as values of median [Interquartile range, IQR]. 

Fig. 3. The CDF plots of MV settings and parameters of the patient cohorts: 
CARE01 (black), CARESG (red), and CARE02 (blue). 
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(CPD) created from each training dataset. The corresponding cumulative 
distribution density (CDD) plots are shown in Fig. 4 (right column). The 
resulting stochastic models of Ers along with the percentile lines are 
shown in Fig. 5 (left column). Self-validation results of each stochastic 
model are presented graphically in Fig. 5 (right column), and the 
percentage of actual Ers N+1 values within the stochastic model-predicted 
25th – 75th and 5th – 95th percentile ranges are shown in Table 4. 
Table 5 presents the results of the 5-fold cross-validation of each sto-
chastic model. In all cases, self-validation and cross-validation show 
~68% of data within the 25th – 75th percentile range and ~92% of the 
data within the 5th – 95th percentile range. 

3.2. Clinical validation 

The independent CARESG cohort yielded predicted Ers N+1 ranges for 
the 25th – 75th and 5th – 95th percentile ranges as shown in Table 6. For 
both SM1 and SM2, the stochastic models conservatively captured more 
than 90% of the data within the 5th – 95th percentile range. For SM3 
with a longer time interval and lesser data pairs (Table 2), 2 patients of 
the CARESG cohort had less than 90% of the data within the 5th – 95th 
percentile range. 

Ers N+1 predictions, PEEP levels, and MAPE of these Patients 3 and 10 
from the CARESG cohort using the 3 stochastic models are shown in 

Fig. 4. The conditional probability density (left column) and cumulative distribution density (right column) corresponding to SM1, SM2, and SM3, respectively 
(from top to bottom). 

C.Y.S. Ang et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 151 (2022) 106275

7

Figs. 6 and 7, respectively. The first 12 h of patient data are analysed, 
giving a total of 72 intervals (per patient) analysed for SM1 and SM2, 
while SM3 has a total of 24 intervals (per patient) analysed with its 
longer interval. 

3.3. Comparison of stochastic models 

The mean absolute percentage difference (MAPD) of percentiles 
when comparing two different stochastic models is shown in Table 7. 

Fig. 5. The developed stochastic models (left column) and self-validation results (right column) corresponding to SM1, SM2, and SM3, respectively (from top to 
bottom). The 0.5 and 0.9 probability interval corresponds to the 25th – 75th and 5th – 95th percentile range, respectively. 

Table 4 
Self-validation of stochastic models, where Pass50 and Pass90 are the percent-
age (%) of actual Ers,N+1 values within the stochastic model-predicted 25th – 
75th and 5th – 95th percentile range, respectively.  

Stochastic Model SM1 SM2 SM3 

Within 25th to 75th percentile (Pass50) 67.90 66.97 67.27 
Within 5th to 95th percentile (Pass90) 92.84 92.54 92.44  
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Results show that there is a relatively higher MAPD between the 5th and 
95th percentiles. The absolute differences between the cumulative dis-
tribution density (CDD) plots of the stochastic models are also shown in 
Fig. 8. The percentage difference of the total area under the curve of the 
absolute difference plots, PDAUC are 1.16%, 1.46% and 1.15% for SM1- 
SM2, SM1-SM3, and SM2-SM3, respectively. 

4. Discussion 

4.1. Stochastic models 

Fig. 3 shows that the MV settings and parameters used are different 
for all three patient cohorts (CARE01, CARE02 and CARESG), except for 
VT, which is not significantly different between the CARE01 and CARESG 
cohorts. PEEPs used for CARESG cohort had slightly wider ranges, 
whereas maximum inspiratory flows for CARE01 were lower. The I:E 
ratio and respiration rate of the CARESG cohort also have slightly nar-
rower ranges compared to the CARE01 and CARE02 cohorts. The results 
in Table 3 show the variation of respiratory mechanics as well as 
ventilator settings and parameters, which are all shown to be signifi-
cantly different between cohorts, apart from VT of the CARE01 and 
CARESG cohort (P < 0.05; Kruskal-Wallis). This result indicates the 
different centers have different clinical practices and preferences. 
Table 2 shows the training dataset composition of each stochastic model 
in this study. Used as part of the training data for stochastic models SM2 
and SM3, the addition of the CARE02 patient cohort increases the total 
number of filtered breaths by an additional 229% in comparison to the 

original training dataset (CARE01) used by Lee et al. [7]. Subsequently, 
the amount of training data (Ers pairs) available is increased by an 
additional 178% for SM2. This increase in training data would ensure 
that the developed stochastic models are more inclusive and capable of 
statistically representing a wider range of patient conditions as 
compared to SM1. Despite using the same breath dataset as SM2, the 
training dataset for SM3 only consisted of 7,146 Ers pairs, mainly due to 
the selection of a longer 30-min time interval, N. 

From Table 3, median Ers values of CARESG differ from the CARE01 
and CARE02 cohorts by 3.84 and 3.40 cmH2O/L, respectively, suggesting 
patients in the validation dataset have dissimilar and varying respiratory 
mechanics profiles as shown in Fig. 2, and are thus suitable for valida-
tion analysis. The Ers values of the three patient cohorts are significantly 
different while falling within physiological ranges reported by literature 
[3,30,50–52]. Both CARE01 and CARE02 exhibit a non-normal distribu-
tion that is skewed towards the right, suggesting that there are lesser 
patients with high respiratory elastance and resistance. The respiratory 
elastance distribution of both cohorts is centered at the interquartile 
range (25th and 75th percentile) of ~25–50 cmH2O/L, indicating that 
large patient samples of respiratory elastance are within this range. 
CARESG displayed a trimodal distribution. This distribution is likely due 
to the difference in cohort patient numbers where the CARESG cohort 
consists of only 14 patients, thus leading to the difference in data dis-
tributions. This further highlights the need for multi-center observa-
tional trials for continuous respiratory mechanics monitoring and the 
development of the stochastic model. 

The left column (a,c,e) in Fig. 4 shows the conditional probability 

Table 5 
5-fold cross-validation of stochastic models where each 20% block of data for training (80% or 4 blocks) and testing (20% or 1 block) are denoted “a”, “b”, “c”, “d”, and 
“e” to show which 4 are used in training. The block left out of the training set is used for testing in 5-fold cross-validation.  

Stochastic Model SM1 SM2 SM3 

Training Datasetsc Pass50a Pass90a Pass50 Pass90 Pass50 Pass90 
[-,b,c,d,e] 52.34 71.52 65.73 87.90 65.27 87.48 
[a,-,c,d,e] 66.92 93.37 64.67 92.54 66.89 92.59 
[a,b,-,d,e] 75.28 95.66 69.59 93.06 67.39 92.97 
[a,b,c,-,e] 78.22 96.79 74.60 95.08 76.55 95.04 
[a,b,c,d,-] 65.07 92.30 66.61 93.22 66.55 93.24 
Mean (Standard Deviation) 67.57 (±10.15) 89.93 (±10.44) 68.24 (±4.00) 92.36 (±2.67) 68.53 (±4.55) 92.26 (±2.84) 
Percentage difference (%)b 0.50 3.14 1.89 0.20 1.88 0.19  

a Pass50 and Pass90 are the percentage (%) of actual Ers,N+1 values within the stochastic model-predicted 25th – 75th and 5th – 95th percentile range, respectively. 
b Percentage difference is the absolute percentage difference (%) of the mean Pass50 or Pass90 with respect to the self-validation results (Table 2). 
c For the stochastic model training datasets, [-,b,c,d,e] indicates that subsets b,c,d and e were used for training, whereas subset a was used as the validation set, 

and so forth. 

Table 6 
Ers,N+1 predictions for each stochastic model, where the 50 and 90 prc interval corresponds to the 25th – 75th and 5th – 95th percentile range, respectively, IQR is inter- 
quartile range, and values are reported as percentages (%).   

SM1 SM2 SM3 

Patient Within 50 prc 
interval 

Within 90 prc 
interval 

Outside 90 
prc interval 

Within 50 prc 
interval 

Within 90 prc 
interval 

Outside 90 
prc interval 

Within 50 prc 
interval 

Within 90 prc 
interval 

Outside 90 
prc interval 

1 22.54 98.59 1.41 26.76 98.59 1.41 13.04 100.00 0.00 
2 88.73 100.00 0.00 81.69 97.18 2.82 73.91 95.65 4.35 
3 64.79 98.59 1.41 60.56 95.77 4.23 47.83 100.00 0.00 
4 73.24 97.18 2.82 70.42 94.37 5.63 65.22 100.00 0.00 
5 90.14 98.59 1.41 80.28 98.59 1.41 91.30 100.00 0.00 
6 88.73 100.00 0.00 91.55 100.00 0.00 82.61 100.00 0.00 
7 63.38 95.77 4.23 60.56 94.37 5.63 52.17 86.96 13.04 
8 78.87 100.00 0.00 71.83 100.00 0.00 60.87 100.00 0.00 
9 87.32 100.00 0.00 84.51 100.00 0.00 82.61 100.00 0.00 
10 74.65 91.55 8.45 74.65 92.96 7.04 52.17 78.26 21.74 
11 77.46 97.18 2.82 76.06 97.18 2.82 73.91 100.00 0.00 
12 91.55 100.00 0.00 90.14 100.00 0.00 91.30 100.00 0.00 
13 85.92 100.00 0.00 83.10 100.00 0.00 82.61 100.00 0.00 
14 78.87 98.59 1.41 76.06 98.59 1.41 73.91 95.65 4.35 
Median 

[IQR] 
78.87 
[73.59–88.38] 

98.59 
[97.54–100] 

1.41 
[0.00–2.46] 

76.06 
[70.77–82.75] 

98.59 
[96.13–100] 

1.41 
[0.00–3.87] 

73.91 
[54.35–82.61] 

100 
[96.74–100] 

0.00 
[0.00–3.26] 

Mean 76.16 98.29 1.71 73.44 97.69 2.31 67.39 96.89 3.11  
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density of Ers N for SM1, SM2, and SM3 respectively. It is observed that 
for values of Ers N less than 75 cmH2O/L, there is a relatively higher 
probability density, marked by the regions of yellow-coloured peaks. 
This trend is due to the datapoint density is higher in the regions of Ers N 
less than 75 cmH2O/L as shown in the plots of Fig. 5. In SM2, an increase 
in the training dataset size and thus datapoint density, results in tighter 
percentile lines throughout the range of Ers N, especially in the range of 

Ers N > 75 cmH2O/L. This shows patients in the CARE02 cohort have a 
wider range of Ers as seen in Fig. 2, thus contributing to data points of 
higher Ers. 

The tighter percentile lines of SM2 relative to SM1 also show an 
increase in training dataset size along with increased patient variability, 
leading to an improvement in stochastic model performance in terms of 
both range and predictive accuracy. For SM3, the percentile lines are 

Fig. 6. Analysis of CARESG Patient 3 using: SM1 (1a, 1b, 1c), SM2 (2a, 2b, 2c), and SM3 (3a, 3b, 3c). Patient Ers profiles and the stochastic model predicted Ers,N+1 
range are shown in panels 1a, 2a, and 3a. Actual Ers,N+1 values which fall within and outside of the stochastic model predicted Ers,N+1 5th – 95th percentiles are 
plotted in green and red, respectively. The patient PEEP levels are shown in panels 1b, 2b, and 3b. The MAPE of model fitting is presented in panels 1c, 2c, and 3c. 
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wider in comparison to SM1 and SM2. The increased distance between 
the percentile lines compensates for the greater spread of data over a 
longer time interval, which is expected as patients have a greater time 
period in which to change and may thus change more over this time 
period. However, the sudden vertical jump followed by a horizontal 
distribution at approximately Ers N = 110 cmH2O/L observed in Fig. 5e, 
may be due to reduced data density. 

Median clinical Ers of MV patients from the three cohorts in this 
study, as well as in literature [3,30,50–52], are below 40 cmH2O/L, 
justifying the sufficiency in Ers N range for SM3. In addition, for all 
stochastic models, the distribution shape of the percentile lines deviates 
from the expected linear distribution in the Ers N range between 0 and 5 
cmH2O/L. This behaviour is expected as MV respiratory failure patients 
tend to have relatively much higher respiratory elastance, leading to 

Fig. 7. Analysis of CARESG Patient 10 using: SM1 (1a, 1b, 1c), SM2 (2a, 2b, 2c), and SM3 (3a, 3b, 3c). Patient Ers profiles and the stochastic model predicted Ers,N+1 
range are shown in panels 1a, 2a, and 3a. Actual Ers,N+1 values which fall within and outside of the stochastic model predicted Ers,N+1 5th – 95th percentiles are 
plotted in green and red, respectively. The patient PEEP levels are shown in panels 1b, 2b, and 3b. The MAPE of model fitting is presented in panels 1c, 2c, and 3c. 
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data scarcity in these lower ranges of Ers N as seen in Fig. 2 [30,53]. 
Therefore, the Ers N axis is limited from 5 to 125 cmH2O during sto-
chastic model comparison analysis. 

For self-validation of all 3 stochastic models, approximately 67% and 
92% of the actual Ers N+1 values fall within the 25th – 75th (Pass50) and 
5th – 95th (Pass90) percentile range, respectively. Ideally, 50% and 90% 
of the actual Ers N+1 values should fall within the respective ranges. 
Results from the 5-fold cross-validation yield a mean Pass50 of 
approximately 68% for all 3 models, whereas the mean Pass90 is 
approximately 90% for SM1, and 92% for both SM2 and SM3. The 
Pass50 is the model’s interquartile range and should cover only 50% of 
the respiratory elastance. The discrepancy in Pass50 values at 68% from 
the ideal values of 50% shows the developed stochastic model is a more 
conservative estimation of the respiratory elastance distribution with 
higher coverage than it should in this less clinically useful range. 

Results from both validation methods are almost similar, with a 
maximum percentage difference of mean Pass50 and Pass90 of only 
1.89% and 3.14%, respectively. This outcome suggests the amount of 
training data for stochastic model development is sufficient to account 
for the heterogeneity of respiratory mechanics in the patient cohorts. 
Both validation methods produce Pass90 results near the ideal values of 
the 5th – 95th percentile range but show tendencies towards conserva-
tive over-estimation. Despite over-estimation in the Pass50 and Pass90 
results, it would provide a more conservative predicted respiratory 
elastance range as more actual Ers N+1 values fall within the 25–75th and 
5–95th percentile ranges, thus providing a higher margin of error during 
clinical use. The increase in training dataset size is reflected as a lower 
absolute percentage difference (APD) of the mean Pass90 during cross- 
validation with respect to the self-validation results. SM2 and SM3 
have an APD of 0.20% and 0.19%, respectively, in comparison with the 
3.14% of SM1 (benchmark model). This marks an absolute improvement 
of 2.94% and 2.95% for SM2 and SM3, respectively for the clinically 
more important prediction of the 90 percentile interval of Ers N+1 
(Pass90). 

SM1 and SM2 are developed for a clinically unrealistic prediction 
interval of 10 min and would lead to a significant increase in clinician 
workload [27,54]. In the works in glycemic control, insulin in-
terventions are managed on an hourly basis using a stochastic 
model-integrated protocol (STAR protocol), resulting in improvements 
to patient care and a reduction in clinician workload [25]. Thus, the 
development of a 30-min interval stochastic model (SM3) marks a 200% 
increase in interval length size in comparison to SM1 and SM2. This 
improvement further bridges the gap towards critical care applications, 
where clinical assessments and treatment titrations are usually imple-
mented on an hourly basis. 

4.2. Clinical validation of stochastic models 

Clinical validation of the stochastic models shows SM2 yields a lower 
percentage of actual Ers N+1 values that fall within the stochastic model 
predicted ranges compared to SM1. This result is mainly due to the 
tighter percentile lines of SM2 where a larger training dataset is used, 
and thus greater prediction confidence. The Ers N+1 range prediction of 
SM3 yields a lower percentage of actual Ers N+1 values within the 

predicted 50 percentile interval (median [IQR]: 73.91% 
[54.35–82.61%]), which suggests a further increase in dataset size may 
be required for the use of 30 min time intervals, or equally, the first 
order stochastic model may not be adequate for the size of intra-patient 
variability seen over this longer time interval. However, the clinically 
more important prediction of the 90 percentile interval of Ers N+1 re-
mains good, with a median [IQR] of 100% [96.74–100%] actual Ers N+1 
values falling within this interval. 

From the Ers N plots in Figs. 6 and 7, the mean values of Ers N show 
fluctuating variations between each 10-min interval. Therefore, by 
introducing 30-min time intervals, mean Ers N+1 values would be less 
affected by the abrupt changes in identified patient Ers. The results in 
Table 6 show a high percentage of actual Ers N+1 values fall within the Ers 

N+1 intervals predicted by the three stochastic models, with a median of 
more than 73% and 98% for the 25–75th and 5–95th percentile in-
tervals, respectively. This outcome demonstrates the performance and 
feasibility of this type of stochastic model for Ers prediction. 

Continuous monitoring of patient-specific respiratory mechanics 
(Ers) or ventilation parameters (PEEP) also allows for the generation of a 
patient profile for retrospective analysis and tracking of patient disease 
progression. The time series plots of Patient 3 (Fig. 6) and Patient 10 
(Fig. 7) show that patient-specific Ers values evolve dynamically over 
time. In these plots, the increase in MAPE signifies the presence of 
patient-specific spontaneous breathing effort. The presence of signifi-
cant patient respiratory effort could lead to incorrect respiratory 
parameter identification with the single compartment lung model [29, 
55,56]. 

4.3. Comparison of stochastic models 

The mean absolute percentage difference (MAPD) between the sto-
chastic model percentile lines for 5 < Ers N < 125 cmH2O/L are shown in 
Table 7. There is a relatively higher MAPD (>2.5%) in the comparison of 
the 5th and 95th percentiles, with the highest MAPD of 5.2% occurring 
at the 5th percentile in the comparison of SM2 and SM3. This is attrib-
uted to the low local data density and non-linear distribution of 
percentile lines as seen in Fig. 5. However, this maximum MAPD of 5.2% 
is lower than the maximum MAPD of 5.97% in the works of Uyttendaele 
et al. which compares the median blood glucose levels, a key perfor-
mance metric, between two insulin sensitivity stochastic models. This 
suggests that the percentile lines between the stochastic models SM1, 
SM2 and SM3 show a relatively low and acceptable magnitude of 
discrepancy among each other. 

A high absolute difference (>0.25) in cumulative distribution den-
sity (CDD), particularly at Ers < 5 cmH2O/L and Ers > 85 cmH2O/L is 
observed in the plots of Fig. 8. The PDAUC which describes the average 
error per data point over 5 < Ers N < 125 cmH2O/L, is relatively higher in 
SM1-SM3 (0.30% and 0.31% more than SM1-SM2 and SM2-SM3, 
respectively). This is mainly due to the difference in dataset size and 
time interval between SM1 and SM3. SM1-SM3 and SM2-SM3 have a 
higher maximum absolute difference in CDD of 0.6195 and 0.7265 
respectively, compared to 0.2811 of SM1-SM2. For SM1-SM3 and SM2- 
SM3, both points of maximum error occur in the range of 105 < Ers <

125 cmH2O/L, suggesting that the stochastic models in comparison, 
have different predictive capabilities in those regions. In other regions 
where the absolute difference in CDD is low, all three stochastic models 
offer almost similar predictive capabilities. This further demonstrates 
that SM3 with a time interval of 30 min is capable of accurate Ers N+1 
predictions in regions of low CDD, with minimal differences from SM1 
and SM2. The feasibility of a 30-min stochastic model thus provides 
additional clinical utility, potentially improving patient care without 
adding significant clinical burden to intensive care units. 

4.4. Future work 

Adding the CARE02 cohort to the training dataset extended the useful 

Table 7 
Mean absolute percentage difference between stochastic model percentile lines.  

Percentile SM1-SM2 SM1-SM3 SM2-SM3 

5th 4.4 2.6 5.2 
25th 1.7 1.4 1.9 
50th 1.1 1.3 1.1 
75th 1.5 1.8 1.6 
95th 2.7 2.6 3.5 

*SM1-SM2 indicates the comparison between the percentile lines of SM1 and 
SM2, and so forth. 
*Results are reported as mean absolute percentage differences (%). 
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Ers N prediction range. However, longer time intervals, such as that of 
SM3 exhibit data scarcity at higher ranges of Ers N as each time interval 
tends to be saturated with lower Ers values, indicating a non-Gaussian 
distribution of Ers values within an interval, which is also evident in 
the overall histograms of Fig. 2. This result suggests more data may be 
necessary to achieve sufficient data density at higher Ers N ranges and 
longer prediction intervals. 

One possible method of reducing overestimation in the 25th – 75th 
or 5th – 95th percentiles and narrower ranges is shown in the works of 
Le Compte et al., where a constant is introduced to vary the local vari-
ance estimator [22]. Thus, it would be possible to produce tighter model 

percentile lines, but with a less smooth probability distribution, poten-
tially bringing Pass50 and Pass90 closer to their ideal values. In this 
study, the constant is unmodified as to provide a fair comparison with 
the stochastic model previously developed by Lee et al. [7]. Therefore, 
this approach leads to the discrepancy in Pass50 values between the 
obtained results and the ideal value of 50%. 

The single compartment lung model used is easily identifiable but 
can be inaccurate when significant patient spontaneous breathing is 
present. The use of better respiratory models [34,40,55–57] capable of 
capturing and modelling patient respiratory effort could ameliorate this 
issue. Some of these models also enable direct calculation of 

Fig. 8. The orthogonal view (left column) and top view (right column) of the absolute difference in CDD plots. From top to bottom: (a,b): SM1 vs SM2, (c,d): SM1 vs 
SM3, (e,f): SM2 vs SM3. The maximum absolute difference in CDD is 0.2811, 0.6195, and 0.7265 (from top to bottom). The PDAUC are 1.16%, 1.46% and 1.15% (from 
top to bottom). The regions of higher absolute difference (>25%) are highlighted by the red dashed rectangles. 
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patient-specific and breath-to-beath work of breathing, and thus venti-
lator unloading in comparison to the work done by the ventilator, which 
is clinically meaningful in assisted breathing modes [58]. Managing this 
issue would allow extension towards more assisted spontaneous 
breathing modes of MV, as well. 

Other future works include exploring more clinical trials in different 
centers where more data can be collected using a network data acqui-
sition and monitoring system for the further development of the sto-
chastic models [42,59]. In addition, mechanical ventilation virtual 
patients could also serve as a platform for safely and virtually validating 
the developed stochastic models [60]. A dedicated virtual patient plat-
form where patient profiles consisting of patient-specific sensitivities 
such as respiratory elastance could enable the testing of a stochastic 
model-based protocol, thus allowing the long-term performance vali-
dation of the stochastic models. 

5. Conclusions 

In this study, two stochastic models with time intervals of 10 and 30 
min respectively, were developed using patient-specific respiratory 
elastance from two clinical cohorts. When compared to a model from a 
benchmark study, the larger training dataset enabled tighter stochastic 
model percentile lines, increased effective prediction range and more 
robust prediction. The models were validated using retrospective data 
from an independent patient cohort, with a median of more than 98% of 
actual Ers N+1 values falling within the model-predicted 5th – 95th 
percentile range for all models, confirming robust prediction ability. A 
comparison of the stochastic models shows similar predictive capabil-
ities in the range of 5 < Ers < 85 cmH2O/L, even when a time interval of 
30 min is used. The improved stochastic models improve the clinical 
utility, and thus feasibility for synchronisation with clinical ICU 
interventions. 
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Mechanics Assessment for Reverse-Triggered Breathing Cycles Using Pressure 
Reconstruction, Biomedical Signal Processing and Control, 2016. 

[44] J.H. Bates, Lung Mechanics: an Inverse Modeling Approach, Cambridge University 
Press, 2009. 

[45] E.J. Van Drunen, Y.S. Chiew, C. Pretty, G.M. Shaw, B. Lambermont, N. Janssen, J. 
G. Chase, T. Desaive, Visualisation of time-varying respiratory system elastance in 
experimental ARDS animal models, BMC Pulm. Med. 14 (2014) 33. 

[46] A. Gramacki, Nonparametric Kernel Density Estimation and its Computational 
Aspects, Springer International Publishing, Cham, Switzerland, 2018. 

[47] J.W.W. Lee, Y.S. Chiew, C.P. Tan, A.A. Razak, N.N. Abdul Razak, Analysis of 
insulin sensitivity stochastic models between STAR original and Malaysian cohorts, 
IFAC-PapersOnLine 53 (2020) 16143–16148. 

[48] M.B. Amato, C.S. Barbas, D.M. Medeiros, R.B. Magaldi, G.P. Schettino, G. Lorenzi- 
Filho, R.A. Kairalla, D. Deheinzelin, C. Munoz, R. Oliveira, T.Y. Takagaki, C. 
R. Carvalho, Effect of a protective-ventilation strategy on mortality in the acute 
respiratory distress syndrome, N. Engl. J. Med. 338 (1998) 347–354. 

[49] L. Papazian, C. Aubron, L. Brochard, J.-D. Chiche, A. Combes, D. Dreyfuss, J.- 
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