

The expression of virulence genes in Group B Streptococcus isolated from symptomatic pregnant women with term and preterm delivery

> Presented by: Ayesha Bahez

Ayesha Bahez, Hanan H. Wahid, Fatin N. Anahar, Puteri F. D. Mustapha R., Mohammed I.A. Mustafa M., Hamizah Ismail

Group B Streptococcus (GBS)

Group B Streptococcus (GBS) are β-hemolytic, gram-positive bacteria
 that colonize the lower gastrointestinal tract and urogenital tract of nearly
 18% of pregnant women worldwide (Kwatra et al., 2016)

 GBS vaginal colonization during pregnancy is identified as one of the risk factors for preterm delivery (Bianchi-Jassir et al., 2017)

(Whidbey et al., 2013; Winram et al., 1998; Vornhagen et al., 2018)

PRETERM DELIVERY

- Preterm delivery is defined as the delivery that occurs before 37 weeks of gestation and the rate of preterm birth ranges between from 8.1% to 11.2% in Malaysia (Jeganatahan et al., 2015)
- Preterm birth affects 1 in 10 of babies born globally, resulting in an estimated
 15 million babies being born prematurely each year (WHO 2012; Blencowe et al., 2013; Vogel et al., 2018)
- About 30–70% of colonized mothers deliver GBS colonized newborns and 1–
 2% of these develop early-onset infections (Anthony et al., 1979; Barcaite et al., 2008; Melin, 2011; Melin et al., 2013)

SUMMARY OF VIRULENCE FACTORS

Virulence factors	Functions				
Hemolytic pigment encoded by C <i>ylE</i>	GBS vaginal colonization, ascending intrauterine infection and preterm delivery in mice and non human primate GSB resistance to killing by macrophages and neutrophils (Whidbey et al., 2013), (Randis et al., 2014), (Boldenow et al., 2016; Liu et al., 2004)				
Hyaluronidase encoded by <i>HylB</i>	GBS vaginal colonization, ascending intrauterine infection and preterm delivery in mice (Kolar et al., 2015, Vornhagen et al., 2016). (Milligan et al., 1978; Pritchard et al., 1993; Musseer et al., 1989)				
Serine-rich repeat (Srr) proteins encoded by <i>Srr</i>	GBS vaginal colonization in mice (Seo et al., 2013), (Sheen et al., 2011; Wang et al., 2014)				
Bacterial surface adhesin of GBS encoded by <i>BsaB</i>	GBS vaginal colonization (in vitro studies) (Buscetta et al., 2014; Jiang et al., 2014)				

AIM & HYPOTHESIS

AIM	To investigate the association between mRNA expression of virulence genes in GBS isolates obtained from symptomatic pregnant women and preterm delivery				
HYPOTHESIS	The mRNA expression of virulence genes in GBS isolates obtained from symptomatic pregnant women with preterm delivery is elevated when compared to symptomatic pregnant women with term delivery				

METHODOLOGY

 $\mathbf{02}$

Study Design

A prospective laboratory-based follow up study on symptomatic pregnant women attending Department of Obstetrics and Gynaecology of Hospital Tengku Ampuan Afzan (HTAA) in Kuantan

Ethical Approval

Kulliyyah of Medicine Postgraduate Committee (KPGC) Kulliyyah of Medicine Research Committee (KRC) IIUM Research Ethics Committee (IREC) National Medical Research Register (NMRR) Medical Research & Ethics Committee (MREC)

Sample Size Calculation

The Single Proportion method formula was chosen to calculate the sample size The most optimum sample size is 34

Taking into account 20% of margin -: 34.1 x 20% = 6.82 Thus, 34.1 + 6.82 = 40.9 = 41

Inclusion Criteria

Symptomatic pregnant women with < 37 weeks gestational age presented preterm labour, preterm premature rupture of membrane (pPROM), vaginal bleeding, vaginal discharge

Exclusion Criteria

Symptomatic pregnant women with <37 weeks gestational age, who received antibiotics in the two weeks before the high vaginal swab samples were collected

Demographic details

Maternal age, race, body mass index (BMI), education level, occupation, income, smoking habit, alcohol consumption, parity and gestational age

Obstetrical details

Previous preterm delivery, multiple pregnancy, habitual abortion, cervical incompetence, gestational diabetes, pregnancy-induced hypertension, intra-hepatic cholestasis of pregnancy, placenta previa, and placental abruption and delivery outcomes

Processing of GBS isolates

- The high vaginal swab samples were streaked onto blood agar and incubated aerobically for 24 hours
- GBS colonies that exhibited beta hemolysis (small zone of hemolysis around each colony) were differentiated from other beta-hemolytic organisms
- Once GBS colonies were isolated, gram stain was performed and Christie, Atkinson, Munch, Peterson (CAMP) test was used for identification of GBS

LABORATORY METHODS

RESULT & DISCUSSION

Association between Maternal Characteristics and Preterm Delivery

	3S-positive symptomatic pregnant women GBS-positive pregnant women		Smoker (n=1)	1	0		
Demographics & clinical characteristics	term delivery (n=18)	preterm delivery (n=22)	p	Passive smoker (n=18)	7	11	
Maternal age (years)	term benvery (n=10)	preterin denvery (n-22)	0.983	Non-smoker (n=21)	10	11	
≤19 (n=2)	,		0.965	Parity			0.253
20-24 (n=6)	2	4		0 (nulliparous) (n=11)	3	8	0.200
25-29 (n=14)	-	*		1 (primiparous) (n=10)	6	4	
30-34 (n=12)	6	8		2-4 (multiparous) (n=17)	9	8	
≥35 (n=6)	0	0		≥5 (grand-multiparous) (n=2)	0	2	
	3	3	1.000	Gestational age (weeks)	*	-	0.282
Race		20	1.000	22-24 (n=1)	0	1	
Malay (n=37)	17	20		25-27 (n=3)	3	0	
Chinese (n=3)	1	2		28-30 (n=3)	1	2	
Indian (n=0)	0	0		31-33 (n=12)	4	8	
BMI			0.538	34-36 (n=21)	10	11	
<18.5 (underweight) (n=2)	0	2		Previous preterm delivery			0.105
18.5-24.9 (normal) (n=12)	6	6		Yes (n=7)	1	6	
25-29.9 (overweight) (n=14)	5	9		No (n=33)	17	16	
≥30 (obese) (n=12)	7	5		Previous multiple pregnancy			1.000
Education levels			1.000	Yes (n=2)	1	1	
No formal education (n=1)	0	1		No (n=38)	17	21	
Primary (n=0)	0	0		Gestational diabetes			1.000
Secondary (n=14)	6	8		Yes (n=11)	5	6	
Tertiary (n=25)	12	13		No (n=29)	13	16	
Occupation			1.000	Placenta previa			1.000
Housewife (n=20)	9	11		Yes (n=1)	0	1	
Employed (n=20)	9	11		No (n=39)	18	21	
Income (RM)			1.000	Note: Chi squared test was applied and Fischer's exact	test was applied in cell <5		
B40 (<rm4,360) (n="34)</td"><td>15</td><td>19</td><td></td><td colspan="4">Level of significance was set at 0.05.</td></rm4,360)>	15	19		Level of significance was set at 0.05.			
M40 (>RM4,360-RM9,619) & T20 (>RM9,619) (n=	0			Abbreviations: BMI, Body Mass Index; RM, Ringgit Malaysia			

Association between Expression of GBS Virulence Genes with Preterm Delivery

indicates statistical significance between symptomatic pregnant women with term and preterm delivery

Association between Expression of GBS Virulence Genes with Preterm Delivery

• indicates statistical significance between preterm labour and PPROM women with term and preterm delivery

CONCLUSION

CONCLUSION

- Following vaginal colonization, both *CylE* and *HylB* genes of GBS possibly contribute to ascending intrauterine infection and inflammation that triggers preterm delivery in these symptomatic pregnant women
- Hemolytic pigment and hyaluronidase may be targeted for the exploratory and pre-clinical stages of vaccine development as an alternative to the intrapartum antibiotic prophylaxis

STUDY LIMITATIONS

GBS screening is not routinely done among the pregnant women in public hospitals in Malaysia, thus only symptomatic pregnant women, whom high vaginal swabs were taken as part of a diagnosis were included in the study

REFERENCES

- Armistead, B., Oler, E., Adams Waldorf, K., & Rajagopal, L. (2019). The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. Journal of Molecular Biology, 431(16), 2914–2931. <u>https://doi.org/10.1016/j.jmb.2019.01.035</u>
- Vornhagen, J., Quach, P., Boldenow, E., Merillat, S., Whidbey, C., Ngo, L. Y., ... Rajagopal, L. (2016). Bacterial Hyaluronidase Promotes Ascending GBS Infection and Preterm Birth. MBio, 7(3). <u>https://doi.org/10.1128/mbio.00781-16</u>
- Vornhagen, J., Adams Waldorf, K. M., & Rajagopal, L. (2017). Perinatal Group B Streptococcal Infections: Virulence Factors, Immunity, and Prevention Strategies. Trends in Microbiology, 25(11), 919–931. <u>https://doi.org/10.1016/j.tim.2017.05.013</u>
- Jiang, S., & Wessels, M. R. (2014). BsaB, a novel adherence factor of group B streptococcus. Infection and Immunity, vol. 82(3),1007-1016.
- Shabayek S. & Spellerberg B. (2018). Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. *Front. Microbiol*,9(437) 1-2 doi: 10.3389/fmicb.2018.00437
- Patras K. A. & Nizet V. (2018). Group B Streptococcal Maternal Colonization and Neonatal Disease: Molecular Mechanisms and Preventative Approaches. *Front. Pediatr*, 6(27), 2-7 doi: 10.3389/fped.2018.00027
- Puteri Fara Diba Binti Mustapha Rounal (2020). Expression Of Gbs Virulence Genes, HylB And CylE In High Vaginal Swabs Of Symptomatic Pregnant Women Of < 37 Weeks Of Gestational Age At Hospital Tengku Ampuan Afzan (Htaa), Kuantan [Master dissertation, International Islamic University Malaysia].
- Allen U, et al. Relationship between antenatal group B streptococcal vaginal colonization and premature labour. Paediatr Child Health. 1999; 4(7):465–9. [PubMed: 20212961].

REFERENCES

- Doran KS, Nizet V. Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol Microbiol (2004) 54(1):23–31. doi:10.1111/j.1365-2958.2004.04266.x
- Lawn JE, et al. Global report on preterm birth and stillbirth (1 of 7): definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth. 2010; 10(Suppl 1):S1. [PubMed: 20233382]
- Le Doare K, Heath PT. An overview of global GBS epidemiology. Vaccine. 2013; 31(Suppl 4):D7–12. [PubMed: 23973349]
- Stoll BJ, et al. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics. 2011; 127(5):817–26. [PubMed: 21518717]
- Liu L, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015; 385(9966):430–40. [PubMed: 25280870]
- Mokdad AH, et al. Global burden of diseases, injuries, and risk factors for young people's health during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2016; 387(10036):2383–401. [PubMed: 27174305]
- Hitti J, et al. Amniotic fluid infection, cytokines, and adverse outcome among infants at 34 weeks' gestation or less. Obstet Gynecol. 2001; 98(6):1080–8. [PubMed: 11755557]
- DiGiulio DB, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One. 2008; 3(8):e3056. [PubMed: 18725970]
- Han YW, et al. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol. 2009; 47(1):38–47. [PubMed: 18971361]

